Abstract:
A computer-implemented service recommends digital works (and/or creators of works) to a user based on works currently or previously played or downloaded by the user on a player device or based on playlists stored on the player device. The works may be, for example, music files, video files, electronic books, or other digital content for playing by users. A user may thus obtain personalized recommendations that are based on works obtained from sources (web sites, physical CDs, etc.) that are independent of the recommendations system. In one embodiment, the service identifies pairs of works (and/or work creators) that are similar to each other by virtue of the relatively high frequency with which they co-occur on playlists or within play histories of users. The resulting mappings are used to provide recommendations to users.
Abstract:
A computer-implemented matching service matches users to other users, and/or to user communities, based at least in part on a computer analysis of event data reflective of user behaviors. The event data may, for example, evidence user affinities for particular items represented in an electronic catalog, such as book titles, music titles, movie titles, and/or other types of items that tend to reflect the traits of users. Event data reflective of other types of user actions, such as item-detail-page viewing events, browse node visits, search query submissions, and/or web browsing patterns may additionally or alternatively be considered. By taking such event data into consideration, the matching service reduces the burden on users to explicitly supply personal profile information, and reduces poor results caused by exaggerations and other inaccuracies in such profile information.
Abstract:
A method, system, and computer-readable medium for automatically determining appropriate delivery information for one or more items of an order or potential order is described. A variety of types of information can be considered when determining what delivery information is appropriate for one or more items, such as a type of the items, the particular items, relationships of the items to other items, information about the purchaser, and/or information about the recipient. In addition, the automatic determination of an appropriate address for an item being ordered or potentially ordered by a user can be made in a variety of ways, such as based on inferences from past behavior when ordering items, on inferences from information about the item and from available delivery information for the user, and/or on previous explicit indications from the user.
Abstract:
A computer-implemented matching service matches users to other users, and/or to user communities, based at least in part on a computer analysis of event data reflective of user behaviors. The event data may, for example, evidence user affinities for particular items represented in an electronic catalog, such as book titles, music titles, movie titles, and/or other types of items that tend to reflect the traits of users. Event data reflective of other types of user actions, such as item-detail-page viewing events, browse node visits, search query submissions, and/or web browsing patterns may additionally or alternatively be considered. By taking such event data into consideration, the matching service reduces the burden on users to explicitly supply personal profile information, and reduces poor results caused by exaggerations and other inaccuracies in such profile information.
Abstract:
A computer-implemented matching service matches users to other users, and/or to user communities, based at least in part on a computer analysis of event data reflective of user behaviors. The event data may, for example, evidence user affinities for particular items represented in an electronic catalog, such as book titles, music titles, movie titles, and/or other types of items that tend to reflect the traits of users. Event data reflective of other types of user actions, such as item-detail-page viewing events, browse node visits, search query submissions, and/or web browsing patterns may additionally or alternatively be considered. By taking such event data into consideration, the matching service reduces the burden on users to explicitly supply personal profile information, and reduces poor results caused by exaggerations and other inaccuracies in such profile information.
Abstract:
A computer-implemented matching service matches users to other users, and/or to user communities, based at least in part on a computer analysis of event data reflective of user behaviors. The event data may, for example, evidence user affinities for particular items represented in an electronic catalog, such as book titles, music titles, movie titles, and/or other types of items that tend to reflect the traits of users. Event data reflective of other types of user actions, such as item-detail-page viewing events, browse node visits, search query submissions, and/or web browsing patterns may additionally or alternatively be considered. By taking such event data into consideration, the matching service reduces the burden on users to explicitly supply personal profile information, and reduces poor results caused by exaggerations and other inaccuracies in such profile information.
Abstract:
A computer-implemented matching service matches users to other users, and/or to user communities, based at least in part on a computer analysis of event data reflective of user behaviors. The event data may, for example, evidence user affinities for particular items represented in an electronic catalog, such as book titles, music titles, movie titles, and/or other types of items that tend to reflect the traits of users. Event data reflective of other types of user actions, such as item-detail-page viewing events, browse node visits, search query submissions, and/or web browsing patterns may additionally or alternatively be considered. By taking such event data into consideration, the matching service reduces the burden on users to explicitly supply personal profile information, and reduces poor results caused by exaggerations and other inaccuracies in such profile information.
Abstract:
A computer-implemented matching service matches users to other users, and/or to user communities, based at least in part on a computer analysis of event data reflective of user behaviors. The event data may, for example, evidence user affinities for particular items represented in an electronic catalog, such as book titles, music titles, movie titles, and/or other types of items that tend to reflect the traits of users. Event data reflective of other types of user actions, such as item-detail-page viewing events, browse node visits, search query submissions, and/or web browsing patterns may additionally or alternatively be considered. By taking such event data into consideration, the matching service reduces the burden on users to explicitly supply personal profile information, and reduces poor results caused by exaggerations and other inaccuracies in such profile information.
Abstract:
A computer-implemented matching service matches users to other users, and/or to user communities, based at least in part on a computer analysis of event data reflective of user behaviors. The event data may, for example, evidence user affinities for particular items represented in an electronic catalog, such as book titles, music titles, movie titles, and/or other types of items that tend to reflect the traits of users. Event data reflective of other types of user actions, such as item-detail-page viewing events, browse node visits, search query submissions, and/or web browsing patterns may additionally or alternatively be considered. By taking such event data into consideration, the matching service reduces the burden on users to explicitly supply personal profile information, and reduces poor results caused by exaggerations and other inaccuracies in such profile information.
Abstract:
Disclosed are various embodiments for suggesting item prices using item attributes specific to an item classification. One or more input values are received for a set of attributes corresponding to a selected item classification. A user interface is rendered that includes a suggested price range. The suggested price range is determined from a set of historical transaction prices for multiple items that are classified under the selected item classification and match the input value(s) for the set of attributes.