Synthetic document generator
    2.
    发明授权

    公开(公告)号:US11087081B1

    公开(公告)日:2021-08-10

    申请号:US16359930

    申请日:2019-03-20

    Abstract: A synthetic document generator that obtains a configuration for a synthetic document derived from real-world documents. The configuration specifies element templates to be included in the synthetic document and weights for the specified element templates. The system generates synthetic documents based on the configuration; the synthetic documents include diversified versions of the element templates specified in the configuration. Annotation documents are generated for the synthetic documents that include information describing the respective synthetic documents. A machine learning model for analyzing real-world documents can then be trained using the synthetic and annotation documents. Feedback from the analysis of real-world documents by the machine learning model can be used to generate a new configuration for generating additional synthetic and annotation documents which are used to further train the model.

    Per component schedulers making global scheduling decision

    公开(公告)号:US11475921B1

    公开(公告)日:2022-10-18

    申请号:US16996607

    申请日:2020-08-18

    Abstract: Techniques for analyzing stored video upon a request are described. For example, a method of receiving a first application programming interface (API) request to analyze a stored video, the API request to include a location of the stored video and at least one analysis action to perform on the stored video; scheduling a job for the first API request using a global scheduler, the global scheduler to schedule, based at least in part on available bandwidth of processing components including a segmenter, a chunk processor, and a reducer, at least one job queue associated at least one of the processing components; accessing the location of the stored video to retrieve the stored video; segmenting the accessed video into chunks; processing each chunk with a chunk processor to perform the at least one analysis action, each chunk processor to utilize at least one machine learning model in performing the at least one analysis action; joining the results of the processing of each chunk to generate a final result; storing the final result; and providing the final result to a requestor in response to a second API request is described.

Patent Agency Ranking