Abstract:
Features are disclosed for automatically identifying a speaker. Artifacts of automatic speech recognition (“ASR”) and/or other automatically determined information may be processed against individual user profiles or models. Scores may be determined reflecting the likelihood that individual users made an utterance. The scores can be based on, e.g., individual components of Gaussian mixture models (“GMMs”) that score best for frames of audio data of an utterance. A user associated with the highest likelihood score for a particular utterance can be identified as the speaker of the utterance. Information regarding the identified user can be provided to components of a spoken language processing system, separate applications, etc.
Abstract:
Features are disclosed for generating acoustic models from an existing corpus of data. Methods for generating the acoustic models can include receiving at least one characteristic of a desired acoustic model, selecting training utterances corresponding to the characteristic from a corpus comprising audio data and corresponding transcription data, and generating an acoustic model based on the selected training utterances.
Abstract:
Features are disclosed for automatically identifying a speaker. Artifacts of automatic speech recognition (“ASR”) and/or other automatically determined information may be processed against individual user profiles or models. Scores may be determined reflecting the likelihood that individual users made an utterance. The scores can be based on, e.g., individual components of Gaussian mixture models (“GMMs”) that score best for frames of audio data of an utterance. A user associated with the highest likelihood score for a particular utterance can be identified as the speaker of the utterance. Information regarding the identified user can be provided to components of a spoken language processing system, separate applications, etc.
Abstract:
Features are disclosed for automatically identifying a speaker. Artifacts of automatic speech recognition (“ASR”) and/or other automatically determined information may be processed against individual user profiles or models. Scores may be determined reflecting the likelihood that individual users made an utterance. The scores can be based on, e.g., individual components of Gaussian mixture models (“GMMs”) that score best for frames of audio data of an utterance. A user associated with the highest likelihood score for a particular utterance can be identified as the speaker of the utterance. Information regarding the identified user can be provided to components of a spoken language processing system, separate applications, etc.
Abstract:
Features are disclosed for automatically identifying a speaker. Artifacts of automatic speech recognition (“ASR”) and/or other automatically determined information may be processed against individual user profiles or models. Scores may be determined reflecting the likelihood that individual users made an utterance. The scores can be based on, e.g., individual components of Gaussian mixture models (“GMMs”) that score best for frames of audio data of an utterance. A user associated with the highest likelihood score for a particular utterance can be identified as the speaker of the utterance. Information regarding the identified user can be provided to components of a spoken language processing system, separate applications, etc.
Abstract:
Features are disclosed for automatically identifying a speaker. Artifacts of automatic speech recognition (“ASR”) and/or other automatically determined information may be processed against individual user profiles or models. Scores may be determined reflecting the likelihood that individual users made an utterance. The scores can be based on, e.g., individual components of Gaussian mixture models (“GMMs”) that score best for frames of audio data of an utterance. A user associated with the highest likelihood score for a particular utterance can be identified as the speaker of the utterance. Information regarding the identified user can be provided to components of a spoken language processing system, separate applications, etc.
Abstract:
Features are disclosed for automatically identifying a speaker. Artifacts of automatic speech recognition (“ASR”) and/or other automatically determined information may be processed against individual user profiles or models. Scores may be determined reflecting the likelihood that individual users made an utterance. The scores can be based on, e.g., individual components of Gaussian mixture models (“GMMs”) that score best for frames of audio data of an utterance. A user associated with the highest likelihood score for a particular utterance can be identified as the speaker of the utterance. Information regarding the identified user can be provided to components of a spoken language processing system, separate applications, etc.
Abstract:
Features are disclosed for automatically identifying a speaker. Artifacts of automatic speech recognition (“ASR”) and/or other automatically determined information may be processed against individual user profiles or models. Scores may be determined reflecting the likelihood that individual users made an utterance. The scores can be based on, e.g., individual components of Gaussian mixture models (“GMMs”) that score best for frames of audio data of an utterance. A user associated with the highest likelihood score for a particular utterance can be identified as the speaker of the utterance. Information regarding the identified user can be provided to components of a spoken language processing system, separate applications, etc.
Abstract:
Features are disclosed for automatically identifying a speaker. Artifacts of automatic speech recognition (“ASR”) and/or other automatically determined information may be processed against individual user profiles or models. Scores may be determined reflecting the likelihood that individual users made an utterance. The scores can be based on, e.g., individual components of Gaussian mixture models (“GMMs”) that score best for frames of audio data of an utterance. A user associated with the highest likelihood score for a particular utterance can be identified as the speaker of the utterance. Information regarding the identified user can be provided to components of a spoken language processing system, separate applications, etc.
Abstract:
Neural networks may be used in certain automatic speech recognition systems. To improve performance of these neural networks, they may be updated/retrained during run time by training the neural network based on the output of a speech recognition system or based on the output of the neural networks themselves. The outputs may include weighted outputs, lattices, weighted N-best lists, or the like. The neural networks may be acoustic model neural networks or language model neural networks. The neural networks may be retrained after each pass through the network, after each utterance, or in varying time scales.