摘要:
The present invention provides quantification and imaging methods and a system of the echo-texture feature, comprising: obtaining an ultrasonic image; calculating all the pixel values in a selected ROI of the ultrasonic image to obtain a regional standard deviation; excluding pixels with a pixel value smaller than a multiple of the regional standard deviation in the selected ROI; counting a set of pixels centered around a Nth pixel to gather a Nth local mean, a Nth local variance and a Nth local coefficient of variance corresponding the set of pixel values, wherein N is from 1 to the number of the pixels remaining in the selected ROI; and obtaining an echo-texture index according to the local means, the local variances, or the local coefficient of variances. The imaging of echo texture which shows the echo texture distribution of the selected ROI with a color scale changing continuously from red to blue is also included. A parameter is provided to adjust the visualization enhancement of the echo texture.
摘要:
The invention provides an analysis method of ultrasound echo signals based on statistics of scatterer distributions. The beginning of steps, choosing an ultrasound echo signal as a center, and calculating the signal image values of all ultrasound echo signals within a window block in an ultrasound image data to obtain an ultrasound scatterer value. Then, choosing another ultrasound echo signal as the center to repeat the previous steps until all of ultrasound echo signals may be calculated. The interval between each of ultrasound echo signal is one point distance. Finally, to output an ultrasound scatterer mode image with all ultrasound scatterer values by utilizing color scale. The ultrasound scatterer mode image can assist doctor to confirm the relative region of lesion in a target organ.
摘要:
An echogenicity quantification method and a calibration method for ultrasonic device using echogenicity index are disclosed. The method includes: receiving an ultrasound image which comprises a plurality of grayscale pixels; choosing a region of interest (ROI); calculating the values of the grayscale pixels in ROI to obtain average value and standard deviation; excluding pixels in ROI with the grayscale value smaller than the sum of the minimum value in the grayscale image and the product of a first scaling factor and the standard deviation, and larger than the sum of the average value and the product of a second scaling factor and the standard deviation; averaging the values of the remaining grayscale pixels in ROI to obtain an average value of interest; choosing a reference region; averaging the values of the remaining grayscale pixels in the reference region to obtain an average value of reference; and calculating the difference between the average value of interest and the average value of reference to obtain an echogenicity index.
摘要:
An echogenicity quantification method and a calibration method for ultrasonic device using echogenicity index are disclosed. The method includes: receiving an ultrasound image which comprises a plurality of grayscale pixels; choosing a region of interest (ROI); calculating the values of the grayscale pixels in ROI to obtain average value and standard deviation; excluding pixels in ROI with the grayscale value smaller than the sum of the minimum value in the grayscale image and the product of a first scaling factor and the standard deviation, and larger than the sum of the average value and the product of a second scaling factor and the standard deviation; averaging the values of the remaining grayscale pixels in ROI to obtain an average value of interest; choosing a reference region; averaging the values of the remaining grayscale pixels in the reference region to obtain an average value of reference; and calculating the difference between the average value of interest and the average value of reference to obtain an echogenicity index.
摘要:
The present invention provides an acceleration and enhancement methods for ultrasound scatterer structure visualization. The method includes: obtaining an ultrasonic image, calculating all values of the ultrasonic signal points in each mth window centered at a nth signal point to obtain a plurality of original statistical values anxm, obtaining a plurality of mth statistical values by averaging value of original statistical values in the same window, calculating a plurality of mth weighting values based on the statistical values by different weighting formulas, multiplying each weighting value with the original statistical values corresponding to the various size of windows, summing up to obtain an ultrasound structure scatterer value of the nth ultrasonic signal point, and generating an ultrasound scatterer structure image based on a matrix of the ultrasound scatterer values. The present invention further combined interpolation method can reduce the computation time and retain the 80% accuracy.
摘要:
The present invention provides an acceleration and enhancement methods for ultrasound scatterer structure visualization. The method includes: obtaining an ultrasonic image, calculating all values of the ultrasonic signal points in each mth window centered at a nth signal point to obtain a plurality of original statistical values anxm, obtaining a plurality of mth statistical values by averaging value of original statistical values in the same window, calculating a plurality of mth weighting values based on the statistical values by different weighting formulas, multiplying each weighting value with the original statistical values corresponding to the various size of windows, summing up to obtain an ultrasound structure scatterer value of the nth ultrasonic signal point, and generating an ultrasound scatterer structure image based on a matrix of the ultrasound scatterer values. The present invention further combined interpolation method can reduce the computation time and retain the 80% accuracy.
摘要:
The present invention provides quantification and imaging methods and a system of the echo-texture feature, comprising: obtaining an ultrasonic image; calculating all the pixel values in a selected ROI of the ultrasonic image to obtain a regional standard deviation; excluding pixels with a pixel value smaller than a multiple of the regional standard deviation in the selected ROI; counting a set of pixels centered around a Nth pixel to gather a Nth local mean, a Nth local variance and a Nth local coefficient of variance corresponding the set of pixel values, wherein N is from 1 to the number of the pixels remaining in the selected ROI; and obtaining an echo-texture index according to the local means, the local variances, or the local coefficient of variances. The imaging of echo texture which shows the echo texture distribution of the selected ROI with a color scale changing continuously from red to blue is also included. A parameter is provided to adjust the visualization enhancement of the echo texture.