Abstract:
The present invention provides an improved method for aligning optical components in an optical assembly. The method comprises the steps of pre-aligning the optical fibre to the optical device, measuring a coupling efficiency of the optical fiber to the optical device, applying energy to a support means, said energy being sufficient to enable the support means to become ductile, and applying a force to the support means in a direction which increases the coupling efficiency.
Abstract:
A control loop detects the presence of cross-talk between first, second and third adjacent amplitude modulated wavelength division modulated channels of an optical communications system. A receiver including a demultiplexer, such as an Arrayed Waveguide Grating (AWG), receives portions of the energy in the channels to derive first, second and third electrical signals that are respectively replicas of the modulation of the first, second and third channels. Wavelength drift of the carried frequencies of the channels in detected by comparing the three signals in an electronic combinatorial logic unit.
Abstract:
An optical component in the form of a right angled triangular prism having a first side, a second side orthogonal to the first side, and a third side generally inclined to the first and second sides to reflect optical radiation incoming from the first sided towards the second side. The first and second sides have semi-reflecting surfaces acting as etalon surfaces providing an interferometric pattern. The optical transmittance between the first and the second sides is wavelength dependent and the radiation exiting the second side of the component is rotated 90 degrees to the radiation entering the first side.