摘要:
A method for manufacturing a bent article using an aluminum alloy with high strength and excellent corrosion resistance comprises: extruding a cast billet of an aluminum alloy including, by mass, 6.0 to 8.0% Zn, 1.50 to 3.50% Mg, 0.20 to 1.50% Cu, 0.10 to 0.25% Zr, 0.005 to 0.05% Ti, 0.3% or less Mn, 0.25% or less Sr, and the balance Al with inevitable impurities to obtain an extruded material; cooling the extruded material at an average rate of 500° C./min or less immediately after the extrusion processing; subjecting the cooled extruded material to preliminary heating treatment at a temperature within a range of 140 to 260° C. for 30 to 120 seconds within a predetermined time after the extrusion processing; bending the extruded material having undergone the preliminary heating treatment to obtain a bent article; and subjecting the bent article to artificial aging treatment.
摘要:
An aluminum alloy is provided that is used to produce a high-strength aluminum alloy extruded material that exhibits excellent formability. The aluminum alloy consists of 0.30 to 1.00 mass % of Mg, 0.6 to 1.40 mass % of Si, 0.10 to 0.40 mass % of Fe, 0.10 to 0.40 mass % of Cu, 0.005 to 0.1 mass % of Ti, 0.3 mass % or less of Mn, 0.01 to 2.0 mass % of Zn, and 0.10 mass % or less of Zr, with the balance being aluminum and unavoidable impurities, the aluminum alloy having a stoichiometric Mg2Si content of 0.60 to 1.30 mass % and an excess Si content of 0.30 to 1.00 mass %.
摘要:
The method includes casting a billet of an aluminum alloy composition including, by mass: 6.0 to 8.0% of Zn, 1.5 to 3.0% of Mg, 0.20 to 1.50% of Cu, 0.10 to 0.25% of Zr, 0.005 to 0.05% of Ti, 0.15 to 0.35% of Mn, 0.25% or less of Sr, and 0.25 to 0.50% of a total of [Mn+Zr+Sr], and a balance including Al and unavoidable impurities, cooling the billet at a rate equal to or higher than a cooling rate of 50° C./hr after homogenization treatment at 480 to 520° C. for 1 to 14 hours, extruding an extruded material by using the billet subjected to the homogenization treatment so that a temperature of the extruded material directly after extruding becomes 325 to 550° C., cooling the extruded material at a rate of a cooling rate of 50 to 750° C./min directly after extruding, and applying two-stage artificial aging treatment.
摘要:
The method for manufacturing an aluminum alloy extruded material using an aluminum alloy containing 20 to 95% by mass of a recycled aluminum material made by collecting and remelting extruded materials of aluminum alloys that are used or scrap materials generated in a manufacturing process, containing by mass: 6.0 to 8.0% of Zn, 1.0 to 2.0% of Mg, 0.10 to 0.50% of Cu, 0.10 to 0.25% of Zr, and 0.005 to 0.05% of Ti, with 0.30% or less of Si and 0.40% or less of Fe as impurities, and a balance being Al, includes cooling an extruded material at a cooling rate of 50 to 750° C./min from an extruded material temperature of 325 to 550° C. directly after extrusion, and thereafter performing two-stage artificial aging treatment at 90 to 130° C. for 1 to 8 hours and at 130 to 180° C. for 1 to 20 hours.
摘要:
An aluminum alloy extruded material that exhibits high strength by air cooling immediately after extrusion processing and excellent stress corrosion cracking resistance, and a method for manufacturing the same are disclosed. The material includes, by mass: 6.0 to 8.0% of Zn, 1.50 to 2.70% of Mg, 0.20 to 1.50% of Cu, 0.005 to 0.05% of Ti, 0.10 to 0.25% of Zr, 0.3% or less of Mn, 0.05% or less of Cr, 0.25% or less of Sr, and 0.10 to 0.50% in total among Zr, Mn, Cr and Sr, with the balance being Al and unavoidable impurities.
摘要:
A method of producing a high-intensity aluminum alloy extruded material excellent in resistance to stress corrosion cracking, the method comprising: preparing an Al—Zn—Mg-based aluminum alloy, subjecting the aluminum alloy to extrusion so that a temperature of an extruded material obtained immediately after the extrusion is 440° C. or more; allowing the extruded material to cool in an air at a cooling rate of less than 100° C./min until the temperature range of the extruded material reaches 300 to 400° C. from immediately after the extrusion for one minute to 3 minutes and 24 seconds; and then forced cooling the extruded material at a cooling rate of 100 to 2000° C./min until the temperature of the extruded material reaches 150° C. or less, followed by an aging treatment.
摘要:
A method for producing an aluminum alloy extrusion includes: conducting extrusion processing using a casted billet of an aluminum alloy containing 6.0 to 7.0% by mass of Zn, 1.5 to 2.0% by mass of Mg, 0.20 to 1.50% by mass of Cu, 0.10 to 0.25% by mass of Zr, 0.005 to 0.05% by mass of Ti, 0.15 to 0.35% by mass of Mn, 0.25% by mass or less of Sr, content of Mn and Zr and Sr being 0.10 to 0.50% by mass, with the balance being Al and inevitable impurities to obtain an aluminum alloy extrusion; cooling the extrusion to 100° C. or less at a cooling rate of 50 to 750° C./min immediately after the extrusion processing; and then conducting an aging treatment which is performed in one-stage or two-stage and a heat treatment which is performed at higher temperature for a shorter time than the aging treatment.
摘要:
An aluminum alloy extruded material exhibits excellent hardenability that ensures that high strength can be obtained by air-cooling immediately after extrusion and artificial aging, and exhibits excellent formability (e.g., press formability). An aluminum alloy includes 0.30 to 1.00 mass % of Mg, 0.6 to 1.40 mass % of Si, 0.10 to 0.40 mass % of Fe, 0.10 to 0.40 mass % of Cu, 0.005 to 0.1 mass % of Ti, and 0.3 mass % or less of Mn, with the balance being aluminum and unavoidable impurities, the aluminum alloy having a stoichiometric Mg2Si content of 0.60 to 1.30 mass % and an excess Si content of 0.30 to 1.00 mass %.