Abstract:
Method of protecting a distribution network with a line interconnecting busbars, each busbar being connectable, by means of switching devices adjacent to the busbar, to the line and to loads and/or generators. The method divides the distribution network in multiple protection areas, each comprises a busbar, a protection device and an area controller. Upon a change in connect status of a distribution feeder line, load or generator connectable to one of the busbar, the logic controller in this protection area re-calculates the short circuit level of the areas. Based on the recalculated short circuit levels, the protection settings of the areas may be adapted. The embodiment also provides a system and computer program product adapted to perform the method.
Abstract:
A method for automatic protection coordination in a power system network comprises identifying radial source-to-load paths and fault protection devices in the source-to-load paths, for a portion of the power system network to be coordinated. Device settings data for fault protection devices are retrieved, including multiple preconfigured settings for some devices. Fault currents for each of multiple possible electrical faults in said portion of the power system network are predicted, and a selectivity check for each pair of fault protection devices that are adjacent to one another in an identified radial source-to-load path is performed, for each of one or more of the predicted fault currents, taking into account multiple preconfigured settings for remotely controllable fault protection devices. A combination of settings for remotely controllable fault protection devices that minimizes selectivity violations among the pairs is selected, and necessary change-setting commands are sent to remotely controllable fault protection devices.
Abstract:
A method for automatic protection coordination in a power system network comprises identifying radial source-to-load paths and fault protection devices in the source-to-load paths, for a portion of the power system network to be coordinated. Device settings data for fault protection devices are retrieved, including multiple preconfigured settings for some devices. Fault currents for each of multiple possible electrical faults in said portion of the power system network are predicted, and a selectivity check for each pair of fault protection devices that are adjacent to one another in an identified radial source-to-load path is performed, for each of one or more of the predicted fault currents, taking into account multiple preconfigured settings for remotely controllable fault protection devices. A combination of settings for remotely controllable fault protection devices that minimizes selectivity violations among the pairs is selected, and necessary change-setting commands are sent to remotely controllable fault protection devices.