摘要:
In one exemplary aspect, a sorted list of scored media content episodes is received with a computing device of a user. Each respective media content episode is scored by an iterative autotuning prediction algorithm, and wherein each element of the sorted list of scored media content episodes comprises a value that represents a likelihood of a user listening to the respective media content episode and a reference to a location of the respective media content episode. A number of bytes of a download iteration for each media content episode is determined based on value that represents a likelihood of the user listening to the respective media content episode and an index of the respective media content episode in the sorted list. It is detected that a mobile device is in the preferred network. The download iteration is implemented for each media content episode when it is detected that the mobile device is in the preferred network.
摘要:
In one exemplary aspect, a sorted list of scored media content episodes is received with a computing device of a user. Each respective media content episode is scored by an iterative autotuning prediction algorithm, and wherein each element of the sorted list of scored media content episodes comprises a value that represents a likelihood of a user listening to the respective media content episode and a reference to a location of the respective media content episode. A number of bytes of a download iteration for each media content episode is determined based on value that represents a likelihood of the user listening to the respective media content episode and an index of the respective media content episode in the sorted list. It is detected that a mobile device is in the preferred network. The download iteration is implemented for each media content episode when it is detected that the mobile device is in the preferred network.
摘要:
In one exemplary embodiment, a method of a computerized media-content recommender includes receiving a user-judgment score based on an historical user-listening data with respect to a media content. A first prediction score for a user with respect to the media content is calculated with a media-content recommender. The media-content recommender includes a first set of prediction parameters. A first prediction error including a difference between the user-judgment score and the first prediction score is determined. At least one parameter value of the first set of prediction parameters is modified with a machine-learning optimization technique to generate a second set of prediction parameters. A second prediction score for the user with respect to the media content is calculated with a media-content recommender. A second prediction error including a difference between the user-judgment score and the second prediction score is calculated.
摘要:
In one exemplary aspect, a sorted list of scored media content episodes is received with a computing device of a user. Each respective media content episode is scored by an iterative autotuning prediction algorithm, and wherein each element of the sorted list of scored media content episodes comprises a value that represents a likelihood of a user listening to the respective media content episode and a reference to a location of the respective media content episode. A number of bytes of a download iteration for each media content episode is determined based on value that represents a likelihood of the user listening to the respective media content episode and an index of the respective media content episode in the sorted list. It is detected that a mobile device is in the preferred network. The download iteration is implemented for each media content episode when it is detected that the mobile device is in the preferred network.
摘要:
In one exemplary embodiment, a method of a computerized media-content recommender includes receiving a user-judgment score based on an historical user-listening data with respect to a media content. A first prediction score for a user with respect to the media content is calculated with a media-content recommender. The media-content recommender includes a first set of prediction parameters. A first prediction error including a difference between the user-judgment score and the first prediction score is determined. At least one parameter value of the first set of prediction parameters is modified with a machine-learning optimization technique to generate a second set of prediction parameters. A second prediction score for the user with respect to the media content is calculated with a media-content recommender. A second prediction error including a difference between the user-judgment score and the second prediction score is calculated.