Abstract:
A method for extracting parameters of a cutting tool is provided. The method includes obtaining a measurement data set having a point cloud corresponding to a surface of the cutting tool and virtually slicing the point cloud at a pre-determined section to obtain a set of points on the pre-determined section. The method also includes generating a plurality of curves through the set of points and optimizing the plurality of curves to generate optimized fitting curves and extracting the parameters of the cutting tool from the optimized fitting curves. Furthermore, based on the presented rotary angle projection technique, a plurality of parameters can be extracted for the cutting tool.
Abstract:
A method for extracting parameters of a cutting tool is provided. The method includes obtaining a measurement data set having a point cloud corresponding to a surface of the cutting tool and virtually slicing the point cloud at a pre-determined section to obtain a set of points on the pre-determined section. The method also includes generating a plurality of curves through the set of points and optimizing the plurality of curves to generate optimized fitting curves and extracting the parameters of the cutting tool from the optimized fitting curves. Furthermore, based on the presented rotary angle projection technique, a plurality of parameters can be extracted for the cutting tool.
Abstract:
A method of measuring an object includes positioning the object on a moveable stage, performing a rotary scan of the object with a range sensor, and determining geometric parameters of the object based on the rotary scan.
Abstract:
A method of measuring an object includes positioning the object on a moveable stage, performing a rotary scan of the object with a range sensor, and determining geometric parameters of the object based on the rotary scan.