Abstract:
An oscillating inner gearing planetary gear system is provided which does not need to occupy a large space even in a state where a driving source is joined. In particular, the axial length thereof can be shortened, and a large diameter hollow shaft therethrough can be formed. The oscillating inner gearing planetary gear system (100) is configured in such a manner that rotation of an input shaft (104) is reduced by internal oscillating bodies (116A, 116B) oscillatingly rotating relative to an external gear (118), and the reduced output is delivered by the external gear (118) also serving as an output shaft. A middle shaft (108) is located parallel to the external gear (118) at a position more radially outward than the internal oscillating bodies (116A, 116B). An orthogonal gearset (106) connects the middle shaft (108) and the input shaft (104) at a right angle. Power from the input shaft (104) is inputted from a direction radially outward of the internal oscillating bodies (116A, 116B) through the middle shaft(108).
Abstract:
The power transmission device includes an internal gear and an external gear that is inscribed in the internal gear and engages with the internal gear, and can transmit an input power to an attachment. The power transmission device further includes: an inner pin for bringing out a relative rotation component between the internal gear and the external gear; and an output flange connected to the inner pin. In this configuration, the inner pin and the output flange are integrally formed as one member, and a mounting hole for connecting the output flange to the attachment is formed in a surface of the output flange that is opposite to the inner pin.
Abstract:
An internal teeth oscillating inner gearing planetary gear system is provided with an input shaft, an eccentric gear rotated by the input shaft, the internal oscillating body oscillatingly rotated through the inner circumferential surface of the eccentric gear, and an external gear meshed with the internal oscillating body.
Abstract:
An oscillating internally meshing planetary gear system is provided in order to improve basic performance and reduce cost at the same time. The oscillating internally meshing planetary gear system has an internal gear and external gears internally meshing with the internal gear and is configured such that one of the external gears and the internal gear is oscillatingly rotated by means of eccentric bodies formed in an input shaft (eccentric body shaft). The system includes: a sliding motion-facilitating member intervening between an outer periphery of the eccentric body and the oscillating gear; and an eccentric body shaft bearing supporting the eccentric body shaft. In addition to this, the eccentric body shaft bearing and the sliding motion-facilitating member have the same configuration.
Abstract:
An oscillating inner gearing planetary gear system is provided which does not need to occupy a large space even in a state where a driving source is joined. In particular, the axial length thereof can be shortened, and a large diameter hollow shaft therethrough can be formed. The oscillating inner gearing planetary gear system (100) is configured in such a manner that rotation of an input shaft (104) is reduced by internal oscillating bodies (116A,116B) oscillatingly rotating relative to an external gear (118), and the reduced output is delivered by the external gear (118) also serving as an output shaft. A middle shaft (108) is located parallel to the external gear (118) at a position more radially outward than the internal oscillating bodies (116A,116B). An orthogonal gearset (106) connects the middle shaft (108) and the input shaft (104) at a right angle. Power from the input shaft (104) is inputted from a direction radially outward of the internal oscillating bodies (116A,116B) through the middle shaft (108).
Abstract:
An oscillating internally meshing planetary gear system is provided in order to improve basic performance and reduce cost at the same time. The oscillating internally meshing planetary gear system has an internal gear and external gears internally meshing with the internal gear and is configured such that one of the external gears and the internal gear is oscillatingly rotated by means of eccentric bodies formed in an input shaft (eccentric body shaft). The system includes: a sliding motion-facilitating member intervening between an outer periphery of the eccentric body and the oscillating gear; and an eccentric body shaft bearing supporting the eccentric body shaft. In addition to this, the eccentric body shaft bearing and the sliding motion-facilitating member have the same configuration.
Abstract:
An internal teeth oscillating inner gearing planetary gear system is provided with an input shaft, an eccentric gear rotated by the input shaft, the internal oscillating body oscillatingly rotated through the inner circumferential surface of the eccentric gear, and an external gear meshed with the internal oscillating body.
Abstract:
An oscillating inner gearing planetary gear system is provided which does not need to occupy a large space even in a state where a driving source is joined. In particular, the axial length thereof can be shortened, and a large diameter hollow shaft therethrough can be formed. The oscillating inner gearing planetary gear system (100) is configured in such a manner that rotation of an input shaft (104) is reduced by internal oscillating bodies (116A,116B) oscillatingly rotating relative to an external gear (118), and the reduced output is delivered by the external gear (118) also serving as an output shaft. A middle shaft (108) is located parallel to the external gear (118) at a position more radially outward than the internal oscillating bodies (116A,116B). An orthogonal gearset (106) connects the middle shaft (108) and the input shaft (104) at a right angle. Power from the input shaft (104) is inputted from a direction radially outward of the internal oscillating bodies (116A,116B) through the middle shaft (108).
Abstract:
An internal teeth oscillating inner gearing planetary gear system is provided with an input shaft, an eccentric gear rotated by the input shaft, the internal oscillating body oscillatingly rotated through the inner circumferential surface of the eccentric gear, and an external gear meshed with the internal oscillating body.
Abstract:
An internal teeth oscillating inner gearing planetary gear system, wherein installation space for piping, wiring, etc. can be easily secured in the central portion of the system according to a particular application. The gear system is configured such that rotation of an input shaft is reduced by internal teeth oscillating bodies oscillatingly rotating with respect to an external gear. Eccentric shafts are plurally provided. Eccentric shaft gears are provided for the plurality of eccentric shafts, respectively. A transmitting external gear with which the eccentric shaft gears and a driving source-end pinion concurrently mesh is also provided.