Abstract:
Disclosed is a process for preparing isopimaric acid, comprising the following steps: First step: dissolving thermally isomerized rosin in acetone, adding in drops a solution of isobutanolamine in acetone to form a precipitate, standing, filtering, washing with ethanol, and drying to obtain crude ammonium salt of isopimaric acid; recrystallizing the crude ammonium salt of isopimaric acid according to multi-recrystallization, and drying to obtain purified crystal of ammonium salt of isopimaric acid; Second step: dissolving the purified crystal of ammonium salt of isopimaric acid obtained in the first step in ether, adding hydrochloric acid in portions until the crystal of ammonium salt of isopimaric acid disappears, removing a water layer and washing the ether layer with water to neutral, evaporating the ether, dissolving the residue in acetone, adding water slowly into the solution dropwise until crystals cease to grow, then filtering and drying to obtain purified isopimaric acid.
Abstract:
Disclosed is a process for preparing isopimaric acid, comprising the following steps: First step: dissolving thermally isomerized rosin in acetone, adding in drops a solution of isobutanolamine in acetone to form a precipitate, standing, filtering, washing with ethanol, and drying to obtain crude ammonium salt of isopimaric acid; recrystallizing the crude ammonium salt of isopimaric acid according to multi-recrystallization, and drying to obtain purified crystal of ammonium salt of isopimaric acid; Second step: dissolving the purified crystal of ammonium salt of isopimaric acid obtained in the first step in ether, adding hydrochloric acid in portions until the crystal of ammonium salt of isopimaric acid disappears, removing a water layer and washing the ether layer with water to neutral, evaporating the ether, dissolving the residue in acetone, adding water slowly into the solution dropwise until crystals cease to grow, then filtering and drying to obtain purified isopimaric acid.
Abstract:
What is disclosed includes a method for updating virus pattern data in at least a mobile device for one or more anti-virus purposes. The method may include processing a virus pattern to generate one or more images. The method may also include providing the one or more images such that the one or more images are acquired by the mobile device. The mobile device may perform at least one of parsing and decoding of the one or more images to obtain the virus pattern. The mobile device may then update the virus pattern data utilizing the virus pattern.
Abstract:
An optical inspection device is provided herein to achieve the accuracy and convenience of inspecting optical glasses and planar optical objects. The optical inspection device mainly has the optical inspection lenses installed on the arms of a U-shape member that surrounds the object to be examined. Then, by moving the U-shaped member along orthogonal directions, the entire surface of the object could be examined accurately.
Abstract:
An agent for the prevention or alleviation of allergy symptoms contains as an effective component a dioxabycyclo�3.3.0!octane derivative represented by the following general formula (I): ##STR1## where R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5 and R.sup.6 each independently represent a hydrogen atom or alkyl group of 1-3 carbon atoms, or R.sup.1 and R.sup.2 and/or R.sup.4 and R.sup.5 together represent a methylene or ethylene group, and n, m and l represent 0 or 1.An agent for the prevention or alleviation of allergy symptoms also contains as an effective component an antioxidant in addition to the dioxabicyclo�3.3.0!octane derivative.
Abstract:
Example embodiments disclosed herein relate to development of an application. An interface can be provided to develop an application using multiple nodes associated with a workflow model. The workflow model can include implicit backtracking based on node type.
Abstract:
A computer-implemented method for providing protection for a data file is disclosed. The method includes employing allowable location information to control access to information of the data file, wherein the allowable location information is associated with the data file The information in the data file is inaccessible if a location of a computer employed to access the data file is not within an allowable geographic area defined by the allowable location information.
Abstract:
A method for preparing pimaric acid type resin acids includes the following steps: step (1) adding refined resin acid, turpentine, or rosin along with maleic anhydride at a mass ratio of 1:0.3-1.5 into a reaction bottle, dissolving the ingredients into a C1-C10 lower fatty acid solvent, the mass ratio of the C1-C10 low fatty acid to refined resin acid is 0.05-30:1, then carrying out additional reaction by heating directly or with assistance of a microwave, subsequently cooling, crystallizing, filtering, and washing; and step (2) combining the filtrates collected in step (1), stripping the solvent by vacuum distillation to obtain pimaric acid type resin acid coarse product, dissolving the resulting coarse product in NaOH aqueous solution to prepare aqueous solution of pimaric acid type resin acid salt, adjusting the pH level to 6-14 with a mineral acid or an organic acid while stirring, and either directly purifying or acidifying followed by purifying, the resulting precipitation to obtain the final product. The method has the characteristics of high yield, high product content, low cost, and low environmental pollution.
Abstract:
Example embodiments disclosed herein relate to development of an application. An interface can be provided to develop an application using multiple nodes associated with a workflow model. The workflow model can include implicit backtracking based on node type.
Abstract:
A method for preparing pimaric acid type resin acids includes the following steps: step (1) adding refined resin acid, turpentine, or rosin along with maleic anhydride at a mass ratio of 1:0.3-1.5 into a reaction bottle, dissolving the ingredients into a C1-C10 lower fatty acid solvent, the mass ratio of the C1-C10 low fatty acid to refined resin acid is 0.05-30:1, then carrying out additional reaction by heating directly or with assistance of a microwave, subsequently cooling, crystallizing, filtering, and washing; and step (2) combining the filtrates collected in step (1), stripping the solvent by vacuum distillation to obtain pimaric acid type resin acid coarse product, dissolving the resulting coarse product in NaOH aqueous solution to prepare aqueous solution of pimaric acid type resin acid salt, adjusting the pH level to 6-14 with a mineral acid or an organic acid while stirring, and either directly purifying or acidifying followed by purifying, the resulting precipitation to obtain the final product. The method has the characteristics of high yield, high product content, low cost, and low environmental pollution.