Abstract:
A method according to one embodiment includes forming a high Ku first oxide magnetic layer above a substrate by sputtering; forming a low Ku second oxide magnetic layer above the first oxide magnetic layer by sputtering; forming an exchange coupling layer of CoCrPt-oxide above the second oxide magnetic layer; and forming a magnetic cap layer above the exchange coupling layer. Additional systems and methods are also presented.
Abstract:
Perpendicular magnetic recording media has been enhanced by controlling the initial growth of magnetic oxide layers and increased magnetic isolation between the grains in the initial magnetic layer. An onset magnetic oxide layer is sputter deposited in an argon-oxygen gas mixture between the main CoPtCr-oxide magnetic layers and the underlying Ru layer. The insertion of the onset magnetic oxide layer enhances the coercivity of the oxide magnetic layers and also improves the nucleation field. The media signal-to-noise ratio and bit error rate also are significantly improved due to the improvement of the initial segregation of Co magnetic grains in the magnetic oxide layers.
Abstract:
A perpendicular magnetic recording medium has an “exchange-spring” type magnetic recording layer (RL) with an improved coupling layer (CL). The RL includes the first or lower ferromagnetic layer MAG1, sometimes called the “media” layer, the second or upper ferromagnetic layer MAG2, sometimes called the “exchange-spring” layer, and the intermediate CL that provides ferromagnetic exchange coupling between MAG1 and MAG2. The CL is formed of NiCr or RuCr based alloys, or CoCr or CoCrB alloys with high Cr and/or B content (Cr plus B>about 25 atomic percent), or RuCoCr alloys with low Co content (
Abstract:
In a thin film magnetic disk, a crystalline CrNi pre-seed layer is sputtered onto a substrate such as glass, followed by a RuAl seed layer. The CrNi pre-seed layer reduces grain size and its distribution, and improves in-plane crystallographic orientation, coercivity (Hc) and SNR. In a preferred embodiment the RuAl seed layer is followed by a Cr alloy underlayer. In a preferred embodiment the Cr alloy underlayer is followed by an onset layer and a magnetic layer, or by two or more magnetic layers antiferromagnetically coupled through one or more spacer layers. The crystalline CrNi pre-seed layer allows use of a thinner RuAl seed layer which results in smaller overall grain size, as well as a reduction in manufacturing cost due to relatively high cost of ruthenium. The CrNi pre-seed layer also allows use of a thinner Cr alloy underlayer which also contributes to reduce overall grain size.
Abstract:
The thin film magnetic disk of the present invention includes a non-metallic substrate having a seed layer deposited on the substrate, an underlayer deposited upon the seed layer composed of a chromium alloy having a relatively high oxygen concentration portion of from 2,000 ppm to 20,000 ppm and preferably approximately 4,000 ppm to 12,000 ppm, followed by a relatively low oxygen concentration portion of from 0-2,000 ppm, and preferably from 500 ppm to 1,500 ppm and a magnetic layer that is deposited upon the underlayer. The underlayer total thickness is in the range of from approximately 250 Å to approximately 700 Å with a preferred thickness of approximately 450 Å, wherein approximately half of the underlayer thickness is the high oxygen concentration portion and half is the low oxygen concentration portion.
Abstract:
A method of fabricating media comprises forming recording media on a substrate. An overcoat is deposited on the recording media opposite the substrate. The overcoat has a first surface finish. The overcoat is etched to remove material and provide the overcoat with a second surface finish that is smoother than the first surface finish. The depositing and etching may occur sequentially in an in-situ, dry vacuum process. The second surface finish may not be mechanically processed after etching to further planarize the overcoat.
Abstract:
Perpendicular magnetic recording (PMR) media and methods of fabricating PMR media are described. The PMR media includes, among other layers, an underlayer, a first onset layer on the underlayer, a second onset layer on the first onset layer, and a perpendicular magnetic recording layer on the second onset layer. The second onset layer has a magnetic moment which is higher than both a magnetic moment of the first onset layer and a magnetic moment of the perpendicular magnetic recording layer.
Abstract:
A perpendicular magnetic recording medium has an “exchange-spring” type magnetic recording layer (RL) with an improved coupling layer (CL). The RL includes the first or lower ferromagnetic layer MAG1, sometimes called the “media” layer, the second or upper ferromagnetic layer MAG2, sometimes called the “exchange-spring” layer, and the intermediate CL that provides ferromagnetic exchange coupling between MAG1 and MAG2. The CL is formed of NiCr or RuCr based alloys, or CoCr or CoCrB alloys with high Cr and/or B content (Cr plus B>about 25 atomic percent), or RuCoCr alloys with low Co content (
Abstract:
Perpendicular magnetic recording media and methods of fabricating perpendicular magnetic recording media are described. The perpendicular magnetic recording medium of one embodiment includes an interlayer, an underlayer, and a perpendicular magnetic recording layer. The interlayer is formed from a NiWCr alloy.
Abstract:
The applicants disclose a thin film magnetic media structure with a pre-seed layer of CrTiAl. The CrTiAl pre-seed layer presents an amorphous or nanocrystalline structure. The CrTiAl pre-seed layer improves in-plane c-axis orientation while maintaining a good orientation ratio. The pulse transition width (PW50) is narrowed and the soft error rate is improved. The preferred seed layer is RuAl.