Abstract:
A gas oven has an oven muffle and a gas burner for said oven muffle. The gas oven has a thermogenerator for generating electrical energy during operation of the gas burner for the purpose of supplying electrical energy to an electrical functional unit, for example for supplying said electrical energy to a fan or a control of the gas oven. In this case, the thermogenerator is designed and arranged to be heated, and for heat to be introduced by the gas burner.
Abstract:
The disclosure relates to a cooking vessel which is of a prespecified cooking vessel type and comprises: a cooking vessel type encoding device which encodes the cooking vessel type of the cooking vessel, with the cooking vessel type encoding device being a passive, electrical resonant circuit, with a resonant frequency of the resonant circuit encoding the cooking vessel type of the cooking vessel.
Abstract:
A gas burner for a gas cooktop has a gas burner body with gas outlet openings. A thermogenerator is arranged above the gas burner body, advantageously arranged concentrically relative to said gas burner body and with the same shape and size, wherein the thermogenerator is heated by said gas burner body. The thermogenerator bears against a cooler pot base by way of its upper face. The thermogenerator generates electrical energy which is used to operate a control of the gas cooktop and which can be stored.
Abstract:
A gas oven has an oven muffle and a gas burner for said oven muffle. The gas oven has a thermogenerator for generating electrical energy during operation of the gas burner for the purpose of supplying electrical energy to an electrical functional unit, for example for supplying said electrical energy to a fan or a control of the gas oven. In this case, the thermogenerator is designed and arranged to be heated, and for heat to be introduced by the gas burner
Abstract:
An illuminating apparatus for an induction coil of an induction cooking field is in the form of a ⅓ circular ring segment and carries conducting tracks, which form turns of a coil, which is connected to several LEDs. During induction coil operation an alternating voltage is induced in the coil and consequently the LEDs are supplied. With such an illuminating apparatus it is possible without additional wiring expenditure to illuminate an induction coil under a glass ceramic cooking field.
Abstract:
In an embodiment of the invention an operating device for a glass ceramic hob (25) can be provided and has an operating unit (11). The operating unit (11) has a rotary toggle (12), which is magnetically mounted on a glass ceramic hob (25). A bearing device (13) below the glass ceramic hob has guide magnets (15), which form a magnetically acting guide link, which permits both a rotary movement (R) and a linear movement (L) of the rotary toggle (12). The rotary toggle (12) has signalling magnets (19) along its outer circumference and with them are associated beneath the hob (25) Hall sensors (21). Further Hall sensors (22) are positioned between the guide magnets (15). A random movement (R, L) of the rotary toggle (12) can be detected with the Hall sensors (21, 22). The operating unit (11) can be removed. The glass ceramic hob (25) requires no openings or the like.
Abstract:
A heating unit (1) for a cooking point has an outer heater (3) and an inner heater (4) located concentrically for separately heating an associated surface area (13, 14) of the overall heating surface (2). The two heaters (3, 4) can be differently regulated such that supplied power is periodically switched over and distributed in very short, but variable time intervals in a continuously alternating manner to the two heaters (3, 4). Switching over takes place in the passage of the alternating current characteristic through the zero line. Thus, without influencing a clicking rate, there can be a random power distribution on at least two surface areas (13, 14) of the same heating surface (2) and a high efficiency with a relatively simple control (10).
Abstract:
A method for indicating the thermal state of cooking appliances with an optical and/or acoustic signalling device, comprising the steps of: counting forward from a starting number in response to the heating means of the cooking appliance being switched on; and, counting backwards after the heating means of the cooking appliance has been switched off, the signalling device being switched on when the count exceeds a first number and being switched off when the count falls below a second number.An apparatus for indicating the thermal state of cooking appliance with an optical and/or acoustic signalling device, comprising: an electronic bidirectional counter; clock generating logic for controlling clock pulses to the counter; a detector connected to the logic for determining the switching on and off of the heating means of the cooking appliance, the counter being clocked upwardly after the switching on, and being clocked downwardly after the switching off; and, at least one count recognition circuit connected to the counter, which on reaching predetermined numbers switches the signalling device on and off.In both the method and apparatus the rate of forward and backward counting can be made proportional to the actual heating and cooling characteristics of the cooking appliances.
Abstract:
A control instrument is used for the manually continuously adjustable supply of electric power to electric hot plates in the form of individual power pulses. The control instrument contains a switch, operated by a bimetallic member, whose heater is controlled by an electronic circuit and supplies current to the heating means in individual half-waves. An automatic initial cooking device with an electronic timing member is provided which, during the initial cooking phase, reduces the power supply to heater in a predetermined ratio and consequently correspondingly increases the power supplied to the electric hot plate. The automatic initial cooking device is automatically switched on by the control instrument knob. By rotating the control knob beyond a median power limit the automatic initial cooking device is switched off.
Abstract:
The invention relates to a method for operating an induction heating device. The induction heating device comprises an induction coil and a frequency converter for producing a control voltage for the induction coil. The frequency converter comprises a rectifier rectifying an alternating supply voltage (UN), an intermediate circuit capacitor, looped in between output terminals of the rectifier and equalizing the rectified voltage (UG), and at least one controllable switching element, looped in between the output terminals of the rectifier. According to the invention, in a predetermined discharge interval (INT) before a zero crossing (ND) of the alternating supply voltage (UN), the intermediate circuit capacitor is discharged to a threshold value by controlling the at least one switching element before the induction coil is controlled in order to produce an adjustable heating capacity.