Abstract:
One or more switches are interposed between a controller portion and a storage device. When transmission of a command to a certain storage device fails, a command is transmitted starting from an upstream side to a downstream side of a path between the controller portion and the switch to which the certain storage device is connected, and when command transmission fails while transmitting a command from a kth switch (k is an integer of 0 or more) which is connected to a (k+1)th switch and is one level upstream of the (k+1)th switch or from any port of the controller portion, it is determined that a failure has occurred in a power source that supplies power to the (k+1)th switch.
Abstract:
A storage apparatus includes a drive unit device including a plurality of storage drives, a drive interface unit and a power supply unit, the storage drives being configured to provide a physical storage area for creating a logical storage area to be used by an external apparatus, the drive interface unit being configured to input and output data to and from the storage drives, the power supply unit being configured to supply operation power to the storage drives and the drive interface unit, a storage controller including a plurality of processing units and a drive control interface unit, the processing units being configured to perform a data input/output process via the drive interface unit, the data input/output process including a process of writing data from the external apparatus into the storage drives and a process of reading data out of the storage drives, the drive control interface unit being configured to issue a command to the drive interface unit in response to a request from each of the processing units, a failure existence/non-existence recording part configured to record, for every attempt of each of the plurality of the processing units to perform the data input/output process via a plurality of data paths which are communication paths for performing data transfer to and from the drive interface unit of the drive unit device, whether the relevant data input/output process was successful for each of the data paths, and a failure detection unit configured to perform a power failure detection process which, in a case where one of the plurality of processing units has determined that the data input/output process with the drive interface unit has not been performed successfully, determines whether a result of the data input/output process performed by each of the other processing units has been recorded in the failure existence/non-existence recording part within a predetermined period of time after an abnormality of the relevant data input/output process has been recorded in the failure existence/non-existence recording part, and, in a case where the first processing unit which has detected the abnormality in the data input/output process has determined that the data input/output process abnormality is recorded in the failure existence/non-existence recording part for all the data paths, provides an instruction to stop the data input/output processes to the drive unit device in which the data input/output process abnormality has been detected and other drive unit devices coupled downstream of the relevant drive unit device.
Abstract:
One or more switches are interposed between a controller portion and a storage device. When transmission of a command to a certain storage device fails, a command is transmitted starting from an upstream side to a downstream side of a path between the controller portion and the switch to which the certain storage device is connected, and when command transmission fails while transmitting a command from a kth switch (k is an integer of 0 or more) which is connected to a (k+1)th switch and is one level upstream of the (k+1)th switch or from any port of the controller portion, it is determined that a failure has occurred in a power source that supplies power to the (k+1)th switch.
Abstract:
One or more switches are interposed between a controller portion and a storage device. When transmission of a command to a certain storage device fails, a command is transmitted starting from an upstream side to a downstream side of a path between the controller portion and the switch to which the certain storage device is connected, and when command transmission fails while transmitting a command from a kth switch (k is an integer of 0 or more) which is connected to a (k+1)th switch and is one level upstream of the (k+1)th switch or from any port of the controller portion, it is determined that a failure has occurred in a power source that supplies power to the (k+1)th switch.
Abstract:
Provided is a storage subsystem capable of inhibiting the deterioration in system performance to a minimum while improving reliability and availability. This storage subsystem includes a first controller for controlling multiple drive units connected via multiple first switch devices, and a second controller for controlling the multiple drive units connected via multiple second switch devices associated with the multiple first switch devices. This storage subsystem also includes a connection path that mutually connects the multiple first switch devices and the corresponding multiple second switch devices. When the storage [sub]system detects the occurrence of a failure, it identifies the fault site in the connection path, and changes the connection configuration of the switch device so as to circumvent the fault site.
Abstract:
The invention proposes a storage apparatus and conversion board that can increase the number of hard disk drive heads in a given, limited space for installation of disk units in the storage apparatus, and can consequently improve data read/write performance.A storage apparatus has a plurality of first disk units of a specific size, each removable, and a controller that controls data read/write from/to the first disk units, and the storage apparatus includes: external connectors, each provided in corresponding positions where the first disk units are installed, and physically and electrically connected with the first disk units installed in a specific state; and a removable conversion unit provided in one or more of the external connectors, and used for installing, in the position where one or more of the first disk units are to be installed, a larger number of second disk units, each smaller in physical size, than the one or more first disk units.
Abstract:
There are provided a cache region that stores write data from a host device, storage media, a data storage region for the storage media, and a comparison unit. A first comparison object is generated for N items of write data on the cache region and the N items of write data are transferred to the data storage region. Write data is read from a designated address of the data storage region and this write data is written to the storage media. When N items of write data have been read, a second comparison object is generated in respect of the write data. The comparison unit compares the first comparison object and the second comparison object, and if the result of the comparison is a mismatch, the N items of write data on the cache region are again transferred to the data storage region.
Abstract:
A storage system comprises a storage device for storing data, a control apparatus which controls the storage device and comprises multiple communication ports, and a switch apparatus which expands the number of storage device couplings and comprises multiple communication ports. Respective multiple communication ports of the control apparatus are coupled to respective multiple communication ports of the switch apparatus, and the switch apparatus is coupled to the storage device. The control apparatus configures at least one communication port of the multiple communication ports of the control apparatus, to a dedicated communication port for outputting only a prescribed command issued when a failure is detected.
Abstract:
An object is to provide an information processing apparatus capable of improving the availability as a system while improving the reliability of a data transfer path and a data transfer method. An information processing apparatus has a data transfer path branching in a tree structure, from a root node to a plurality of nodes while communicably coupling therebetween and transmitting serial data between the root node and the plurality of nodes, including two internode data transfer paths provided between at least a pair of nodes of the plurality of nodes, through which serial data transfer is performed; and a routing processing unit provided to each terminal nodes that are the nodes on both ends of the internode data transfer path, transfers the return data from the transmission destination node to the transmission source node by using the same internode data transfer path as the internode data transfer path used for data transfer to the transmission destination node, when each of the terminal nodes transfers data received from any of another nodes being a transmission source to any of the nodes being a transmission destination via the other terminal node.
Abstract:
Reduction of data processing capacity attributable to the occurrence of a failure is prevented by promptly identifying the failure location.A storage apparatus includes a plurality of expanders connected to storage media storing data sent from a host system, and a controller for controlling the expanders, wherein the controller sends a failure detection command to the plurality of expanders; the plurality of expanders store the command in their own storage units; and if one expander from among the plurality of expanders detects a failure in another expander immediately following and connected to the one expander, the one expander reads the command stored in a storage unit for the one expander and sends a response including failure detection information corresponding to the command to the controller.