摘要:
The powder container includes a container body containing a powder for image formation, the powder being to be supplied to a powder replenishing device; a conveyor configured to convey the powder from one end in a longitudinal direction to the other end at which a cylindrical container opening is formed, the conveyor being provided inside the container body; a gear configured to rotate the conveyor with an external driving force; a container cover configured to cover the gear, the container cover having a gear exposing hole for partially exposing a gear tooth; and a nozzle receiver configured to guide the conveying nozzle inside of the container body, the nozzle receiver being provided on the container opening. The container cover includes a container engaged portion provided outer than the tooth of the gear in a radial direction.
摘要:
The powder container includes a container body containing a powder for image formation, the powder being to be supplied to a powder replenishing device; a conveyor configured to convey the powder from one end in a longitudinal direction to the other end at which a cylindrical container opening is formed, the conveyor being provided inside the container body; a gear configured to rotate the conveyor with an external driving force; a container cover configured to cover the gear, the container cover having a gear exposing hole for partially exposing a gear tooth; and a nozzle receiver configured to guide the conveying nozzle inside of the container body, the nozzle receiver being provided on the container opening. The container cover includes a container engaged portion provided outer than the tooth of the gear in a radial direction.
摘要:
The powder container includes a container body containing a powder for image formation, the powder being to be supplied to a powder replenishing device; a conveyor configured to convey the powder from one end in a longitudinal direction to the other end at which a cylindrical container opening is formed, the conveyor being provided inside the container body; a gear configured to rotate the conveyor with an external driving force; a container cover configured to cover the gear, the container cover having a gear exposing hole for partially exposing a gear tooth; and a nozzle receiver configured to guide the conveying nozzle inside of the container body, the nozzle receiver being provided on the container opening. The container cover includes a container engaged portion provided outer than the tooth of the gear in a radial direction.
摘要:
A development device can include a developer containing part containing developer, a carrier to carry developer that is supplied from the developer containing part to a development range, a partition dividing the developer containing part into a supply part and a circulation part beneath the supply part to collect developer from the carrier, a first transport member in the supply part of the developer containing part to supply developer from the supply part to the carrier, and a second transport member in the circulation part to transport developer in the circulation part in an axial direction of the carrier. The device can also include a removable seal member, which seals a supplied-developer and/or a collected-developer communicating area.
摘要:
A powder container that has a hollow interior for containing powder includes a tubular member that is equipped with an information storage unit that stores therein at least information related to a container body, and attached to the container body such that the container body is located within an inner hole of the tubular member. The powder container also includes a movement restricting unit that restricts movement of the tubular member in an axial direction of the tubular member.
摘要:
A powder container that has a hollow interior for containing powder includes a tubular member that is equipped with an information storage unit that stores therein at least information related to a container body, and attached to the container body such that the container body is located within an inner hole of the tubular member. The powder container also includes a movement restricting unit that restricts movement of the tubular member in an axial direction of the tubular member.
摘要:
An electrophotographic image forming apparatus of the present invention frees images from various defects including the thinning of horizontal lines, the omission of the trailing edge of an image, background contamination, granularity particular to a halftone image, carrier scattering, and image noise. Further, the apparatus of the present invention solves problems ascribable to patches used to sense image density. Moreover, the apparatus of the present invention faithfully reproduces tonality and has a high developing ability.
摘要:
An image forming apparatus of the present invention includes a bias power supply for applying a bias VB to a developer carrier on which a developer is deposited. A charge potential deposited on an image carrier, which faces the developer carrier for forming a latent image thereon, is 400 V or below in absolute value. Assume that the potential of the image carrier is lowered to VL after exposure, that a development potential is |VB−VL|, that the maximum set value of the development potential for development is |VB−VL|max, and that the development potential varies in a range satisfying relations: |VB−VL|≦|VB−VL|max+|VB−VL|max×0.2 |VB−VL|≧|VB−VL|max−|VB−VL|max×0.2 |VB−VL|max≦300 V Then image density varies by a width of 10% of image density corresponding to the maximum set value of the development potential or less.
摘要:
An image forming apparatus including a developing device and an image carrier facing the developing device. The developing device includes a main magnetic pole for causing a developer to magnetically deposit on an outer periphery of a developer carrier in a form of a magnet brush. The image carrier has a coefficient of friction of 0.5 or below, and a flux density in a normal direction has an attenuation ratio of 40% or above.
摘要:
In an image forming apparatus, the rise and fall of a short magnet brush are realized and allow a nip for development to be reduced. This, coupled with the fact that the short magnet brush uniformly rises and falls in the axial direction of a developing sleeve, frees the trailing edge of an image from local omission or jaggedness while reducing defective images including a thinned dot image.