Abstract:
Briefly, in accordance with one or more embodiments, a backplane includes one or more optical links and is capable of receiving one or more circuit cards. Optical signals sent via the optical links may at least partially travel in a free space region between optical elements of the circuit cards and the optical links. Optical signals may also traverse the free space between optical links in the absence of a circuit card wherein the optical signal may travel to one or more other circuit cards on the backplane. As a result, in one or more embodiments a network between one or more of the circuit cards on the backplane may be automatically configured even in the absence of one or more circuit cards from the backplane.
Abstract:
An optoelectronic circuit has an optical to electrical converter, a duo-binary encoder with an input coupled to an output of the converter, and a duo-binary decoder having an input coupled to the output of the encoder. A decision circuit having an input coupled to an output of the decoder is also provided. Other embodiments are also described and claimed.
Abstract:
A direct-drive modulator driver and an optical transponder including the driver are disclosed. The driver includes a transistor having a first terminal, a second terminal and an input terminal, where said first terminal is grounded. The driver further comprises of a laser diode having a p-terminal and an n-terminal, where said p-terminal is coupled to a power supply, and said n-terminal is coupled to the second terminal of the transistor. The driver further comprises of an input load coupled to the input terminal of the transistor.
Abstract:
Embodiments of the invention are directed to an optical USB (OUSB) to enhance the data rate of USB by adding super-high data rate (e.g. 10 Gbps) optical communication on top of its current specification so that backward compatibility is achievable. Mechanical tolerances may be achieved by using embedded lenses to expand a beam emerging from the connector prior to entering its mating connector and using an identical lens in the mating connector to collimate the beam back onto a fiber.
Abstract:
An optoelectronic circuit has an optical to electrical converter, a duo-binary encoder with an input coupled to an output of the converter, and a duo-binary decoder having an input coupled to the output of the encoder. A decision circuit having an input coupled to an output of the decoder is also provided. Other embodiments are also described and claimed.
Abstract:
Methods of sensing lasers in real time for monitoring and control are disclosed. In one aspect, a method may include applying a perturbation current to a laser for a plurality of consecutive modulation cycles. Power of light emitted by the laser over the plurality of consecutive modulation cycles may be detected. Then, the perturbation current may be changed. The power of light emitted by the laser over a plurality of consecutive modulation cycles may be detected after changing the perturbation current. Then, an operating characteristic of the laser may be determined based, at least in part, on a change in the power of light detected before and after the change in the perturbation current. Sensors and systems incorporating the sensors are also disclosed.
Abstract:
An opto-electronic module may be provided with an internal thermoelectric cooler. Components to be cooled may be positioned over the thermoelectric cooler. Other components may be positioned aside the cooled components but raised, using a riser, to position them away from the cooled components.
Abstract:
Embodiments of the invention are directed to an optical USB (OUSB) to enhance the data rate of USB by adding super-high data rate (e.g. 10 Gbps) optical communication on top of its current specification so that backward compatibility is achievable. Mechanical tolerances may be achieved by using embedded lenses to expand a beam emerging from the connector prior to entering its mating connector and using an identical lens in the mating connector to collimate the beam back onto a fiber.
Abstract:
Embodiments of the invention are directed to an optical USB (OUSB) to enhance the data rate of USB by adding super-high data rate (e.g. 10 Gbps) optical communication on top of its current specification so that backward compatibility is achievable. Mechanical tolerances may be achieved by using embedded lenses to expand a beam emerging from the connector prior to entering its mating connector and using an identical lens in the mating connector to collimate the beam back onto a fiber.
Abstract:
Briefly, in accordance with one or more embodiments, optical transceiver module includes a first equalizer disposed internal to the optical transceiver module that is capable of equalizing an electrical signal provided to a host board in combination with a second equalizer disposed on the host board in a split equalization type arrangement.