摘要:
The present invention discloses a method of simultaneously conducting more than one step of a radiofrequency phase cycle in a nuclear magnetic resonance (NMR) experiment. The method first involves providing a sample. Next, one or more radiofrequency pulses are applied to a plurality of spatially discrete slices of the sample under conditions effective to simultaneously conduct more than one step of a radiofrequency phase cycle in a single transient. Then, NMR signals generated from the step of applying the radiofrequency pulses are acquired. Finally, the NMR signals are processed to obtain an NMR spectrum.
摘要:
The present invention relates to a method of conducting an N-dimensional nuclear magnetic resonance (NMR) experiment in a phase-sensitive manner by the use of forward and backward sampling of time domain shifted by a primary phase shift under conditions effective to measure time domain amplitudes and secondary phase shifts. The present invention also relates to methods of conducting an N-dimensional NMR experiment in a phase-sensitive manner by the use of dual forward and backward sampling of time domain shifted by a primary phase shift under conditions effective to measure secondary phase shifts or at least partially cancel dispersive and quadrature image signal components arising in the frequency domain from secondary phase shifts.
摘要:
The present invention discloses a suite of G2FT and GFT NMR experiments that can be used for complete resonance assignments of proteins and for obtaining structural (conformational and orientational) constraints for determining high resolution three-dimensional structures of biomolecules.
摘要:
A method for generating a model for epithelial ovarian cancer is presented, comprising the steps of obtaining a mass spectrum for each of a plurality of samples, segmenting each of the mass spectra into “bins,” and determining a plurality of relationships between two or more bins. One are more statistically significant factors are identified according to the determined plurality of relationships, and a predictive model is generated as a function of the one or more identified factors. A method of the present invention may further comprise the step of obtaining one or more nuclear magnetic resonance spectra of each of the samples, which are segmented into a plurality of bins. Combinations of mass spectra and NMR spectra may be used to determine the plurality of relationships. In other embodiments, methods for identifying the presence of EOC indicated by a biological sample of an individual are presented.
摘要:
The present invention relates to a method for simultaneously conducting multiple steps of a cycle of a nuclear magnetic resonance (NMR) experiment without the use of pulsed magnetic field gradients during signal detection in which one or more spatially selective radiofrequency pulses are applied to a sample under conditions effective to simultaneously spatially distribute the radiofrequency power associated with each of the cycle steps to a plurality of spatially discrete sections within the sample such that each section executes an individual step of the cycle and the resultant NMR signals from each of the cycle steps are produced simultaneously.
摘要:
The present invention presents a new approach to rapidly obtaining precise high-dimensional NMR spectral information, named “GFT NMR spectroscopy”, which is based on the phase sensitive joint sampling of the indirect dimensions spanning a subspace of a conventional NMR experiment. The phase-sensitive joint sampling of several indirect dimensions of a high-dimensional NMR experiment leads to largely reduced minimum measurement times when compared to FT NMR. This allows one to avoid the “sampling limited” data collection regime. Concomitantly, the analysis of the resulting checmical shift multiplets, which are edited by the G-matrix transformation, yields increased precision for the measurement of the chemical shifts. Additionally, methods of conducting specific GFT NMR experiments as well as methods of conducting a combination of GFT NMR experiments for rapidly obtaining precise chemical shift assignment and determining the structure of proteins or other molecules are disclosed.
摘要:
The present invention relates to a method of conducting an N-dimensional nuclear magnetic resonance (NMR) experiment in a phase-sensitive manner by the use of forward and backward sampling of time domain shifted by a primary phase shift under conditions effective to measure time domain amplitudes and secondary phase shifts. The present invention also relates to methods of conducting an N-dimensional NMR experiment in a phase-sensitive manner by the use of dual forward and backward sampling of time domain shifted by a primary phase shift under conditions effective to measure secondary phase shifts or at least partially cancel dispersive and quadrature image signal components arising in the frequency domain from secondary phase shifts.
摘要:
The present invention relates to a method for simultaneously conducting multiple steps of a cycle of a nuclear magnetic resonance (NMR) experiment without the use of pulsed magnetic field gradients during signal detection in which one or more spatially selective radiofrequency pulses are applied to a sample under conditions effective to simultaneously spatially distribute the radiofrequency power associated with each of the cycle steps to a plurality of spatially discrete sections within the sample such that each section executes an individual step of the cycle and the resultant NMR signals from each of the cycle steps are produced simultaneously.