Abstract:
Functionality is described herein for allocating group-buying deals in a group-buying service. In certain implementations, the functionality operates by receiving deal information from deal-providing entities (such as merchants). The deal information describes plural deals. The functionality then assigns a number of impressions to each deal so as to maximize revenue provided to an entity which administers the group-buying service. This yields allocation information. The functionality then presents deals to users in accordance with the allocation information. For example, if the allocated number of impressions for a certain deal is x, then the functionality will provide x opportunities for users to select this deal.
Abstract:
An advertisement perception predictor may forecast the effectiveness of an online advertisement in a web page by predicting whether the online advertisement may be perceived by a consumer. The advertisement perception predictor may use a perception model that is trained for determining perception probability values of online advertisements. The perception model may be applied to an online advertisement to determine a perception probability value for the online advertisement. The perception probability value may indicate the likelihood that a consumer is likely to view the online advertisement.
Abstract:
The relevance of an object, such as a document resulting from a query, may be determined automatically. A graphical model-based technique is applied to determine the relevance of the object. The graphical model may represent relationships between actual and observed labels for the object, based on features of the object. The graphical model may take into account an assumption of noisy training data by modeling the noise.
Abstract:
This disclosure describes various exemplary methods, computer program products, and systems for selecting features for ranking in information retrieval. This disclosure describes calculating importance scores for features, measuring similarity scores between two features, selecting features that maximizes total importance scores of the features and minimizes total similarity scores between the features. Also, the disclosure includes selecting features for ranking that solves an optimization problem. Thus, this disclosure identifies relevant features by removing noisy and redundant features and speeds up a process of model training.
Abstract:
A method and system for generating a search result for a query of hierarchically organized documents based on retrieval of subtrees that are key resources for topic distillation is provided. The retrieval system may identify documents relevant to a query using conventional searching techniques. The retrieval system then calculates a subtree feature for subtrees that have an identified document as their root. After the retrieval system calculates the subtree feature for the subtrees, the retrieval system may generate a subtree relevance score for each subtree based on its subtree feature. The retrieval system may then order the identified documents based on their corresponding subtree relevances.
Abstract:
According to a cost-per-action advertising model, advertisers submit ads with cost-per-action bids. Ad auctions are conducted and winning ads are returned with contextually relevant search results. Each time a winning ad is selected by a user, resulting in the user being redirected to a website associated with the advertiser, a selected impression and a price is recorded for the winning ad. Periodically, an advertiser submits a report indicating a number of actions attributed to the ads that have occurred through the advertiser website. The advertiser is then charged a fee for each reported action based on the recorded prices for the winning ads and based on the number of selected impressions recorded for the winning ads.
Abstract:
A task guidance tool that displays instructional steps and associated advertisements may facilitate the accomplishment of a task by users who are otherwise unfamiliar with the task. The task guidance tool may be developed from input data mined from various sources. The task guidance tool may display a series of step pages in which each step page include instructions for accomplishing a corresponding step of the task. Further, one or more step pages of the task guidance tool may be provided with selected advertisements that are displayed with the step instructions.
Abstract:
A method and system for determining the contribution of a document within a hierarchy of documents based on the contribution of descendant documents is provided. The contribution system provides a hierarchy of documents that specifies the ancestor/descendant relations between documents. For each document of a hierarchy, the contribution system determines the contribution of each document factoring in the contribution of descendant documents. The contribution may be the relevance of a document to a topic, a feature of a document, and so on.
Abstract:
A method and system for learning a ranking function that uses a normalized, query-level error function is provided. A ranking system learns a ranking function using training data that includes, for each query, the corresponding documents and, for each document, its relevance to the corresponding query. The ranking system uses an error calculation algorithm that calculates an error between the actual relevances and the calculated relevances for the documents of each query. The ranking system normalizes the errors so that the total errors for each query will be weighted equally. The ranking system then uses the normalized error to learn a ranking function that works well for both queries with many documents in their search results and queries with few documents in their search results.
Abstract:
A method and system for generating a search result for a query of hierarchically organized documents based on retrieval of subtrees that are key resources for topic distillation is provided. The retrieval system may identify documents relevant to a query using conventional searching techniques. The retrieval system then calculates a subtree feature for subtrees that have an identified document as their root. After the retrieval system calculates the subtree feature for the subtrees, the retrieval system may generate a subtree relevance score for each subtree based on its subtree feature. The retrieval system may then order the identified documents based on their corresponding subtree relevances.