Abstract:
From a plurality of preset operation modes, an optimal mode is selected to let the supply air 206 attain a predetermined temperature and humidity. Upon adjusting the opening degrees of dampers 116-119, a cold water valve 156 and a humidifying water valve 154, the system measures the outside air 201, supply air 206 and return air 207 for temperature and humidity to see if a mode boundary is exceeded. If the boundary is exceeded, an assessment time is set. The humidity of the supply air 206 in the mode in effect before the boundary is exceeded is further predicted so as to determine whether the predicted value exceeds the upper limit of a tolerable humidity range or drops below the lower limit thereof.
Abstract:
An optical pickup device 50 comprising a laser diode 1, a photo detector 2, a housing 3 having an optical system for guiding light from the laser diode 1 to an optical disk and guiding light reflected on the optical disk to the photo detector, a wiring 5 to supply current to the laser diode 1, and a metallic cover 9 provided outside of the housing 3, wherein the laser diode 1 is bonded to the housing 3 by adhesive, a metallic member 10 is mounted on the surface of the laser diode 1 by connecting thermally, and the metallic member 10 is thermally connected to the cover 9 by solder.
Abstract:
An image transformation method to be implemented by a computer carries out an image transformation process, by transforming a picked up image that is picked up by a pickup unit having an optical axis tilted by an arbitrary angle with respect to a reference plane into an image substantially equivalent to a picked up image that is picked up by the pickup unit in a state where the optical axis of the pickup unit is perpendicular to the reference plane, and substituting luminance values of coordinates before the transformation as luminance values corresponding to coordinate values after the transformation.
Abstract:
An optical pickup device 50 comprising a laser diode 1, a photo detector 2, a housing 3 having an optical system for guiding light from the laser diode 1 to an optical disk and guiding light reflected on the optical disk to the photo detector, a wiring 5 to supply current to the laser diode 1, and a metallic cover 9 provided outside of the housing 3, wherein the laser diode 1 is bonded to the housing 3 by adhesive, a metallic member 10 is mounted on the surface of the laser diode 1 by connecting thermally, and the metallic member 10 is thermally connected to the cover 9 by solder.
Abstract:
An inkjet recording medium obtained by forming a coating layer containing a pigment and a binder on the surface of a base material and coating layer is subsequently pressed onto a heated mirror finished surface to dry to form an ink absorbing layer through a cast coating method, wherein pigment contains a colloidal silica that has a primary particle diameter of from 10 nm to 100 nm while the ratio of the secondary particle diameter to primary particle diameter is from 1.5 to 3.0.
Abstract:
The computer having a module board with semiconductor elements mounted on both sides thereof, a motherboard on which a plurality of units of the module board are mounted, and a rack cabinet on which a plurality of units of the motherboard are mounted includes a thermo-siphon that is thermally connected to the semiconductor elements mounted on one side of the module board, a metal plate that is thermally connected to the semiconductor elements mounted on one side of the module board, a thermally-conductive member that transfers the heat of the metal plate to the thermo-siphon in a situation where the heat of the semiconductor elements mounted on one side of the module board is transferred to the metal plate, and a pressing member that presses the thermo-siphon and the metal plate against the semiconductor elements mounted on the module board.
Abstract:
An optical pickup, having an optical pickup housing made of resin, for maintaining the heat radiation performance or capacity of a semiconductor laser, also an objective lens driving mechanism, and further a driver IC for the semiconductor laser, while keeping small-size and light-weight thereof, comprises a pickup housing, in which an optical part and a semiconductor laser are fixed; an objective lens, which is attached within the pickup housing; and an objective lens driving mechanism, which is configured to drive the objective lens, further comprising: a metal-made bottom cover, which is configured to cover a lower surface of the pickup housing and a side surface of an inner periphery of an optical disc, wherein the metal-made bottom cover and the semiconductor laser are thermally connected with each other.
Abstract:
An optical disc drive includes a rotation device that rotates an optical disc in a clockwise direction when an upper surface of the optical disc is viewed, a disc mounting portion for mounting of the optical disc thereon has a recess portion, and an optical pickup which irradiates a laser beam on a lower recording surface of the optical disc. The disc mounting portion includes a first penetrating opening portion therethrough that extends from a center area of the recess portion to a periphery of the recess portion. The disc mounting portion further includes a single second penetrating opening portion therethrough being provided at a rear of the disc mounting portion and periphery at an upstream side of the clockwise rotating direction with respect to a center line of the first penetrating opening portion extending from a front to the rear of the disc mounting portion.
Abstract:
An optical disc apparatus, comprising a tray 2, attached to be insertable within housings 9 and 10, and within the housings are included a disc motor 3, an optical pickup 4 and a moving mechanism thereof, and also a unit mechanism chassis 5 for moving the optical pickup thereon and a controller substrate 71 disposed below the unit mechanism chassis for controlling the optical pickup, and further, a wide-width flexible cable 8 for electrical connection between the controller substrate and the optical pickup, wherein the optical pickup mounts laser units 41, 42 and 43 including three (3) pieces of elements, each emitting a laser light different in the wavelength thereof, a penetrating portion 2b and a wall portion 2e are provided in a part of left bottom surface of the tray, while forming a cutoff portion 55 in a part of the chassis, thereby guiding the airflow generated accompanying with rotation of the optical disc onto the optical pickup, with certainty.
Abstract:
A disc drive apparatus comprises: a spindle motor 20 for hold a disc 2 and for rotate it; an optical head 7 for conducting either one of recording or reproducing of information onto/from the disc; a driver unit for moving the optical head in a radial direction of the disc; and a unit mechanism chassis 8 for supporting those thereon, fixedly, wherein the spindle motor is constructed with a rotational drive means made of a magnetic circuit, a rotor portion and a rotation shaft, which define a rotation body, and a spindle motor attachment plate to hold those thereon, and the spindle motor attachment plate has a semi-circular shaped plate configuration in a part thereof, nearly fitting to an outer diameter the rotor portion, in a direction where the optical head is provided, and has a step-like structure in thickness direction of the plate thereof, within a semi-circular shaped region with respect to a line connecting between corner portions on both ends of that semi-circular shape, and also bridging over that line.