Abstract:
A method and apparatus for converting a DC voltage to a lower DC voltage, provides for conducting current from an input terminal, through an inductor to charge a capacitor connected to the inductor at an output terminal and to provide a varying range of load current from the output terminal, alternately switching the input terminal between a supply voltage and a ground potential to produce a desired voltage at the output terminal that is lower than the supply voltage, while providing the varying range of load current, and disconnecting the input terminal from both the supply voltage and the ground potential to reduce an increase in voltage at the output terminal caused by a substantial reduction in the load current, while current through the inductor adjusts in response to the reduced load current.
Abstract:
In one embodiment, the method of these teachings includes decomposing the output ripple voltage into its constituent components and utilizing the scale factor necessary for this decomposition to obtain the measure capacitance and ESR for a power supply/converter.
Abstract:
Systems and methods control timing of switches in power regulators and power amplifiers. The systems and methods monitor a switch node voltage and obtain rising and falling edges of signals obtained from the monitoring. The systems and methods utilize the rising and falling edges of switch drive signals and predetermined data to obtain delay times for subsequent drive signals.
Abstract:
In one embodiment, the method of these teachings includes decomposing the output ripple voltage into its constituent components and utilizing the scale factor necessary for this decomposition to obtain the measure capacitance and ESR for a power supply/converter.
Abstract:
Methods for selecting between the two modes (states) of operation, continuous conduction and discontinuous conduction, are disclosed. Systems that are capable of selecting the operating mode and operating in the continuous conduction mode or the discontinuous conduction mode are also disclosed.
Abstract:
Methods for selecting between the two modes (states) of operation, continuous conduction and discontinuous conduction, are disclosed. Systems that are capable of selecting the operating mode and operating in the continuous conduction mode or the discontinuous conduction mode are also disclosed.
Abstract:
A system includes a first switch connected to a voltage input and a switching node. A second switch is connected to the switching node and a reference potential. A first circuit generates first rising edges and first falling edges by comparing a voltage at the switching node to a first voltage reference. The first voltage reference is between the reference potential and the voltage input. A second circuit generates second rising edges and second falling edges by comparing the switching node voltage to a second voltage reference. The second voltage reference is less than the reference potential. The controller calculates delay times based on the first rising edges, the first falling edges, the second rising edges and the second falling edges. The controller generates drive signals for the first switch and the second switch based on a duty cycle and the delay times.