Abstract:
A phase modulator is provided with supports attached to the resonating element. The supports have a length which is an odd number of quarter wavelengths of a longitudinal acoustic wave excited in the supports by the resonating element. As such, a longitudinal acoustic wave excited at the resonating element end of the support travels along the support, is reflected at the other end of the support, and returns in opposite phase to that of the excited wave, thereby causing a null in longitudinal amplitude of the wave and reducing the damping of the resonating element.
Abstract:
An interferometric fiber optic gyroscope (IFOG) system includes a fiber sensing coil and a semiconductor or rare-earth doped fiber light source emitting light with an associated light source intensity. The source has a front output and back output. An optical coupler is attached to the front output for receiving said light from said light source and the coupler creates two substantially equal intensity light beams for simultaneous transmission into the sensing coil said coupler attached to the coil. The fiber sensing coil supplies return light to the coupler from said equal intensity light beams and the coupler combines and interferes the return light into a combined light beam. An optical phase modulator has a phase modulation amplitude, and the modulator coupled to the coil. An oscillator is coupled to the modulator and produces a periodic voltage which controls the phase modulation amplitude. The combined light signal is transmitted through the light source and received by the detecting means coupled to said light source at the back output. Light detection means detect and convert the combined light beam into an electrical current. An electrical amplifier is coupled to the detector for converting said current into an electrical voltage. Alternating current voltage amplitude controller means is coupled to the amplifier, and controls the associated light source intensity. Electrical signal processing means is coupled to the amplifier and processes the voltage and provides an output signal proportional to the angular rotation rate input of the sensing coil.