Abstract:
Various methods for and embodiments of an aftertreatment system which includes a catalyst disposed upstream of a particulate filter are provided. In one example, the method includes, conducting soot regeneration of the particulate filter under a selected operating condition, and determining whether a soot regeneration frequency of the particulate filter is greater than a threshold frequency. The method further includes initiating a sulfur regeneration of the aftertreatment system based on the soot regeneration frequency of the particulate filter being greater than the threshold frequency, determining whether the soot regeneration frequency of the particulate filter is less than the threshold frequency after the sulfur regeneration, and conducting non-regeneration operation of the aftertreatment system based on the soot regeneration frequency of the particulate filter being less than the threshold frequency after the sulfur regeneration of the aftertreatment system.
Abstract:
Various methods and systems are provided for a vehicle with an engine. In one example, a method includes identifying an approaching tunnel. The method further includes, responsive to a particulate load of a particulate filter, the particulate filter disposed in an exhaust treatment system of an engine of the vehicle, initiating regeneration of the particulate filter at a selected distance before the tunnel such that regeneration is performed before the vehicle enters the tunnel.
Abstract:
Various methods and systems are provided for regenerating an exhaust gas recirculation cooler. One example method includes, initiating an EGR cooler regeneration mode, wherein the EGR cooler regeneration mode comprises changing a fuel distribution of a donor cylinder group relative to a non-donor cylinder group of an engine, and increasing at least one of engine speed or load of the engine.
Abstract:
Various methods and systems are provided for a vehicle with an engine. In one example, a method includes identifying an approaching tunnel. The method further includes, responsive to a particulate load of a particulate filter, the particulate filter disposed in an exhaust treatment system of an engine of the vehicle, initiating regeneration of the particulate filter at a selected distance before the tunnel such that regeneration is performed before the vehicle enters the tunnel.
Abstract:
In preferred embodiments, to, e.g., eliminate condensation build-up in the intake manifold and power cylinders, a charge-air cooler (CAC) and/or EGR cooler “bypass” system is provided that can, e.g., control the intake manifold temperature (IMT) above the dew-point temperature of the boosted air. Preferably, a two-port, single valve-body type valve is provided that proportionally controls the amount of charge-air that is “bypassed” (e.g., not cooled), while simultaneously diverting the charge-air cooler return, preferably, inversely proportionally.
Abstract:
In preferred embodiments, to, e.g., eliminate condensation build-up in the intake manifold and power cylinders, a charge-air cooler (CAC) and/or EGR cooler “bypass” system is provided that can, e.g., control the intake manifold temperature (IMT) above the dew-point temperature of the boosted air. Preferably, a two-port, single valve-body type valve is provided that proportionally controls the amount of charge-air that is “bypassed” (e.g., not cooled), while simultaneously diverting the charge-air cooler return, preferably, inversely proportionally.
Abstract:
An exhaust gas recirculation method and apparatus adapted for use on an internal combustion engine. The apparatus includes an engine operational model, with the engine operational model capable of outputting at least one engine operational characteristic, a feedback controller portion, the feedback controller portion receiving an emissions level feedback and generating a feedback control signal based on a difference between a predetermined EGR level and the emissions level feedback, a feedforward controller portion receiving a plurality of engine sensor inputs and using the plurality of engine sensor inputs in conjunction with the engine operational model to generate a feedforward control signal, the feedforward control signal capable of changing an EGR exhaust gas flow before the plurality of engine sensor inputs show a deviation from a predetermined emissions level, and a controller receiving the feedback control signal, the feedforward control signal, and accessing the engine operational model, the controller regulating an EGR exhaust gas flow in response to the feedback control signal, the feedforward control signal, and the engine operational model.
Abstract:
Various methods and systems for operating an internal combustion engine are provided. In one embodiment, an example method for operating an internal combustion engine includes, under a first condition, charging a compressed air storage vessel via a compressor. The method further includes, under a second condition, directly injecting compressed air from the storage vessel to a cylinder of the engine to enhance fuel combustion.
Abstract:
Various methods and systems for operating an internal combustion engine are provided. In one embodiment, an example method for operating an internal combustion engine includes, under a first condition, charging a compressed air storage vessel via a compressor. The method further includes, under a second condition, directly injecting compressed air from the storage vessel to a cylinder of the engine to enhance fuel combustion.
Abstract:
Various methods and systems are provided for regenerating an exhaust gas recirculation cooler. One example method includes, initiating an EGR cooler regeneration mode, wherein the EGR cooler regeneration mode comprises changing a fuel distribution of a donor cylinder group relative to a non-donor cylinder group of an engine, and increasing at least one of engine speed or load of the engine.