Abstract:
A module latching arrangement for mounting and dismounting on a generally U-shaped support rail at least two module base bodies arranged orthogonally above and extending transversely across the support rail, each of the base bodies having a pair of bottom corner portions arranged on opposite sides of the support rail. At least one foot member is connected for horizontal longitudinal sliding movement relative to one of the base body corner portions relative to the adjacent support rail horizontal flange portion. A lateral displacement arrangement on the foot member is operable, when the foot member is displaced from a locked position toward an unlocked position relative to the support rail, to displace the first base body laterally away from an adjacent second base body mounted on the support rail. The foot member is latched in either a locked or an unlocked position relative to the base member.
Abstract:
An electrical connector for connecting the bare end of an insulated conductor with a circuit on a printed circuit board, including a horizontal printed circuit board having an electrical circuit thereon, an electrically conductive contact arrangement mounted on, and electrically connected with the circuit of, the printed circuit board, the contact arrangement including at least two spaced resilient contacts having adjacent end portions that are biased together, a housing formed from electrically insulating material and containing a conductor opening for receiving the conductor bare end; and a positioning arrangement operable by an actuating tool for positioning the conductor bare end in a clamped position between the contact end portions. When the contact arrangement is in the form of a pair of leaf spring contacts connected in a V-shaped manner, an adjusting device is provided for adjusting the space between the adjacent ends of the contacts.
Abstract:
A cable includes a cable sheath in which are embedded a plurality of insulated conductors at least two of which are helically twisted, the cable being provided with visible markings that indicate where one can electrically engage a selected one of the conductors by an insulation-piercing contact. The cable is formed by arranging a plurality of insulated conductors in a light-transmitting synthetic plastic sheath layer, two or more of the insulated conductors being helically twisted about a longitudinal axis, which cable is optically scanned to determine locations at which contiguous portions of the twisted insulated conductors are superposed orthogonally relative to a reference plane, whereupon markings are formed on the cable sheath layer at locations laterally spaced from the contiguous conductor portions, whereby a selected one of the twisted conductors may be engaged by an insulation-piercing contact.
Abstract:
A plug connector and a method of coding of same is characterized by first and second coding elements that are pre-mountable as a unit on at least one of a pair of plug connector components. The other plug connector component is configured so that when the connector components are initially connected together in an axial direction, one of the coding elements is connected with one of the components and the other coding element is connected with the other component. When the components are separated axially, the respective coding elements are separated so that each are retained on the component with which it was originally connected.
Abstract:
A connector assembly for printed circuit board terminal blocks and the like includes a housing having spaced side and end walls defining a chamber, and a first connector component mounted in the chamber adjacent an access opening contained in the housing walls. A second connector component external of the housing is displaceable between an engaged position in electrical engagement with the first connector component, and a disengaged position disengaged from the first component. A separating lever pivotally connected with the second connector component includes a cam arrangement that cooperates with the housing side walls to displace the second connector component from the engaged position toward the disengaged position relative to the first connector component. A locking arrangement may be provided for locking together the connector components in the electrically engaged condition.
Abstract:
An electrical connector includes a U-shaped metal clamping frame having vertical base and side walls defining a chamber, a stationary electrical contact mounted in the chamber, and a clamping spring arrangement arranged at least partially within the chamber for biasing toward the electrical contact the bare end of an insulated conductor that is axially inserted downwardly into the chamber. The clamping spring comprises a conductive leaf spring having a clamping leg that is inclined, when in the conductor clamping position, at a first acute angle relative to the insertion axis of the conductor. In one embodiment, the clamping leg is supported by an attachment arrangement including an attachment leg arranged at second acute angle relative to the insertion axis. In another embodiment, the clamping leg is integrally connected with the clamping frame, and with the frame base wall defining the stationary electrical contact.
Abstract:
An electrical contact arrangement includes a planar conductive metal blank having sections that are foldable to define pairs of orthogonally arranged component contacts and bus blade contacts. Connected with a first pair of opposed side edges of a horizontal rectangular core section of the blank are a pair of rectangular component contact sections that are upwardly bent to define a pair of component contacts for receiving therebetween an electrical component, such as a printed circuit board. Connected with the orthogonally arranged second pair of opposed side edges of the core section are a pair of rectangular support sections that are bent downwardly, whereby a corresponding pair of bus blade contact sections connected with corresponding edges of the support sections extend in vertical parallel spaced relation to define a pair of bus blade contacts adapted for insertion between the downwardly bent support sections of a corresponding second electrical contact arrangement.
Abstract:
A connector assembly for a planar vertical printed circuit board includes a housing having a pair of parallel space planar vertical side walls defining an open-topped vertical chamber in which the printed circuit board is mounted. First electrical connectors mounted on the vertical end edges of the printed circuit board include body portions that extend outward beyond the vertical edges of the side walls, which extending body portions contain access openings affording communication with first connector contacts in electrical engagement with the printed circuit board. Protective side cover members are fastened to the housing side walls to partially enclose the extending connector body portions, which cover members contain openings opposite the connector body access openings. The cover members contain ventilation openings for cooling the printed circuit board, and the housing includes a mounting foot arrangement for mounting the printed circuit board assembly on a support rail.
Abstract:
A module latching arrangement for mounting and dismounting on a generally U-shaped support rail at least two module base bodies arranged orthogonally above and extending transversely across the support rail, each of the base bodies having a pair of bottom corner portions arranged on opposite sides of the support rail. At least one foot member is connected for horizontal longitudinal sliding movement relative to one of the base body corner portions relative to the adjacent support rail horizontal flange portion. A lateral displacement arrangement on the foot member is operable, when the foot member is displaced from a locked position toward an unlocked position relative to the support rail, to displace the first base body laterally away from an adjacent second base body mounted on the support rail. The foot member is latched in either a locked or an unlocked position relative to the base member.
Abstract:
An electrical module includes a rectangular carrier frame adapted for vertical transverse mounting on a horizontal support rail, a housing for mounting an electrical component in an open-top chamber contained in the carrier frame, and a rectangular electrical connector mounted on and extending across the upper end of the carrier frame, thereby to enclose the component and afford electrical connection with upper terminals thereof. The connector is pivotally connected at one end with the carrier frame for displacement between open and closed positions, and a fastener device serves to lock the connector in the closed position to the carrier frame. Alternatively, the ends of the connector are removably fastened to the carrier frame. Lower terminals of the component are connected with lower contacts arranged at the bottom of the chamber for connection with corresponding lower contacts of adjacent modules mounted in stacked relation on the support rail.