Abstract:
The present disclosure provides crystalline insulin-conjugates. The present disclosure also provides formulations, methods of treatment, methods of administering, and methods of making that encompass these crystalline insulin-conjugates.
Abstract:
The present disclosure provides crystalline insulin-conjugates. The present disclosure also provides formulations, methods of treatment, methods of administering, and methods of making that encompass these crystalline insulin-conjugates.
Abstract:
The present disclosure provides inter alia conjugates of formula (I): wherein n, R1, R2, Rx, Z, X, Y and Z are as defined herein. A conjugate of formula (I) can also be converted to a conjugate of formulae (II) or (III) as described herein. Without limitation, the conjugates can be used to make controlled release materials and chemical sensors.
Abstract:
The present disclosure provides inter alia conjugates of formula (I): wherein n, R1, R2, Rx, Z, X, Y and Z are as defined herein. A conjugate of formula (I) can also be converted to a conjugate of formulae (II) or (III) as described herein. Without limitation, the conjugates can be used to make controlled release materials and chemical sensors.
Abstract:
Conjugates which comprise a drug and a ligand which includes a first saccharide; wherein the conjugate is characterized in that, when the conjugate is administered to a mammal, at least one pharmacokinetic or pharmacodynamic property of the conjugate is sensitive to serum concentration of a second saccharide. Exemplary conjugates and sustained release formulations are provided in addition to methods of use and preparation.
Abstract:
Conjugates which comprise a drug and a ligand which includes a first saccharide; wherein the conjugate is characterized in that, when the conjugate is administered to a mammal, at least one pharmacokinetic or pharmacodynamic property of the conjugate is sensitive to serum concentration of a second saccharide. Exemplary conjugates and sustained release formulations are provided in addition to methods of use and preparation.
Abstract:
The disclosure provides cross-linked materials that include multivalent cross-linking agents that bind an exogenous target molecule; and conjugates that include two or more separate affinity ligands bound to a conjugate framework, wherein the two or more affinity ligands compete with the exogenous target molecule for binding with the cross-linking agents and wherein conjugates are cross-linked within the material as a result of non-covalent interactions between cross-linking agents and affinity ligands on different conjugates. The conjugates also include a drug.
Abstract:
In one aspect, the disclosure provides a conjugate comprising an insulin molecule having an A-chain and a B-chain; an affinity ligand covalently bound to the A-chain; and a monovalent glucose binding agent covalently bound to the B-chain, wherein the affinity ligand competes with glucose for non-covalent binding with the monovalent glucose binding agent. In the absence of glucose, the monovalent glucose binding agent binds the affinity ligand to produce a “closed” inactive form of the insulin molecule. When free glucose is added, it competes with the affinity ligand for binding with the monovalent glucose binding agent to produce an “open” active form of the insulin molecule. The monovalent glucose binding agent and affinity ligand are covalently bound to the insulin molecule. The disclosure also provides methods of using these conjugates and methods of making these conjugates. In another aspect, the disclosure provides exemplary conjugates. The disclosure also provides alternative conjugates that are not necessarily activated by glucose.
Abstract:
The present disclosure provides conjugates which comprise an insulin molecule conjugated via a conjugate framework to one or more separate ligands that include a first saccharide, and wherein the conjugate framework also comprises a fatty chain (e.g., a C8-30 fatty chain). In certain embodiments, a conjugate is characterized in that, when the conjugate is administered to a mammal, at least one pharmacokinetic (PK) and/or pharmacodynamic (PD) property of the conjugate is sensitive to serum concentration of a second saccharide. In certain embodiments, a conjugate is also characterized by having a protracted PK profile. Exemplary conjugates and sustained release formulations are provided in addition to methods of use and preparation.
Abstract:
The present disclosure provides conjugates which comprise an insulin molecule conjugated via a conjugate framework to one or more separate ligands that include a first saccharide, and wherein the conjugate framework also comprises a fatty chain (e.g., a C8-30 fatty chain). In certain embodiments, a conjugate is characterized in that, when the conjugate is administered to a mammal, at least one pharmacokinetic (PK) and/or pharmacodynamic (PD) property of the conjugate is sensitive to serum concentration of a second saccharide. In certain embodiments, a conjugate is also characterized by having a protracted PK profile. Exemplary conjugates and sustained release formulations are provided in addition to methods of use and preparation.