摘要:
The identification of low noise stimulation frequencies for detecting and localizing touch events on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a separate sense line in a touch sensor panel and can have multiple mixers, each mixer using a demodulation frequency of a particular frequency, phase and delay. With no stimulation signal applied to any drive lines in the touch sensor panel, pairs of mixers can demodulate the sum of the output of all sense channels using the in-phase (I) and quadrature (Q) signals of a particular frequency. The demodulated outputs of each mixer pair can be used to calculate the magnitude of the noise at that particular frequency, wherein the lower the magnitude, the lower the noise at that frequency. Several low noise frequencies can be selected for use in a subsequent touch sensor panel scan function.
摘要:
The use of multiple stimulation frequencies and phases to generate an image of touch on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a column in a touch sensor panel and can have multiple mixers. Each mixer in the sense channel can utilize a circuit capable generating a demodulation frequency of a particular frequency. At each of multiple steps, various phases of selected frequencies can be used to simultaneously stimulate the rows of the touch sensor panel, and the multiple mixers in each sense channel can be configured to demodulate the signal received from the column connected to each sense channel using the selected frequencies. After all steps have been completed, the demodulated signals from the multiple mixers can be used in calculations to determine an image of touch for the touch sensor panel at each frequency.
摘要:
Negative pixel compensation in a touch sensor panel is disclosed. The panel can compensate for a negative pixel effect in touch signal outputs due to poor grounding of an object touching the panel. To do so, the panel can reconstruct a captured touch image to remove negative pixel values indicative of the negative pixel effect and compute a composite image from the captured image and the reconstructed image to replace the captured image. In addition or alternatively, the panel can reconstruct a captured touch image to remove negative pixel values indicative of the negative pixel effect and replace the captured image with the reconstructed image.
摘要:
Combined force and proximity sensing is disclosed. One or more sensors can concurrently sense a force applied by an object on a device surface and a proximity of the object to the surface. In an example, a single sensor can sense both force and proximity via a resistance change and a capacitance change, respectively, at the sensor. In another example, multiple sensors can be used, where one sensor can sense force via either a resistance change or a capacitance change and another sensor can sense proximity via a capacitance change.
摘要:
The identification of low noise stimulation frequencies for detecting and localizing touch events on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a separate sense line in a touch sensor panel and can have multiple mixers, each mixer using a demodulation frequency of a particular frequency, phase and delay. With no stimulation signal applied to any drive lines in the touch sensor panel, pairs of mixers can demodulate the sum of the output of all sense channels using the in-phase (I) and quadrature (Q) signals of a particular frequency. The demodulated outputs of each mixer pair can be used to calculate the magnitude of the noise at that particular frequency, wherein the lower the magnitude, the lower the noise at that frequency. Several low noise frequencies can be selected for use in a subsequent touch sensor panel scan function.
摘要:
Negative pixel compensation in a touch sensor panel is disclosed. The panel can compensate for a negative pixel effect in touch signal outputs due to poor grounding of an object touching the panel. To do so, the panel can reconstruct a captured touch image to remove negative pixel values indicative of the negative pixel effect and compute a composite image from the captured image and the reconstructed image to replace the captured image. In addition or alternatively, the panel can reconstruct a captured touch image to remove negative pixel values indicative of the negative pixel effect and replace the captured image with the reconstructed image.
摘要:
The identification of low noise stimulation frequencies for detecting and localizing touch events on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a separate sense line in a touch sensor panel and can have multiple mixers, each mixer using a demodulation frequency of a particular frequency, phase and delay. With no stimulation signal applied to any drive lines in the touch sensor panel, pairs of mixers can demodulate the sum of the output of all sense channels using the in-phase (I) and quadrature (Q) signals of a particular frequency. The demodulated outputs of each mixer pair can be used to calculate the magnitude of the noise at that particular frequency, wherein the lower the magnitude, the lower the noise at that frequency. Several low noise frequencies can be selected for use in a subsequent touch sensor panel scan function.
摘要:
Multi-touch touch-sensing devices and methods are described herein. The touch sensing devices can include multiple sense points, each of which can be stimulated with a plurality of periodic waveforms having different frequencies to measure a touch value at the sense point. Noise at one or more of the frequencies can interfere with this measurement. Therefore, various noise detection (and rejection) techniques are described. The noise detection techniques include two-clean-frequency noise detection, one-clean-frequency noise rejection, and combined two-clean-frequency/one-clean-frequency noise detection. Each of the noise detection techniques can include statistical analyses of the sample values obtained. The touch sensing methods and devices can be incorporated into interfaces for a variety of electronic devices such as a desktop, tablet, notebook, and handheld computers, personal digital assistants, media players, and mobile telephones.
摘要:
The identification of low noise stimulation frequencies for detecting and localizing touch events on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a separate sense line in a touch sensor panel and can have multiple mixers, each mixer using a demodulation frequency of a particular frequency, phase and delay. With no stimulation signal applied to any drive lines in the touch sensor panel, pairs of mixers can demodulate the sum of the output of all sense channels using the in-phase (I) and quadrature (Q) signals of a particular frequency. The demodulated outputs of each mixer pair can be used to calculate the magnitude of the noise at that particular frequency, wherein the lower the magnitude, the lower the noise at that frequency. Several low noise frequencies can be selected for use in a subsequent touch sensor panel scan function.
摘要:
Gestures for converting from a position control mode to a motion continuation mode are disclosed. A position control mode can be invoked when the user simultaneously places two or more fingers upon a sensor panel. The fingers can then be moved around to effect position control. A motion continuation mode can be invoked when one or more fingers are lifted off (but at least one finger remains in contact with the sensor panel). If the motion continuation mode is invoked, a virtual control ring can be generated, and scrolling of the viewable area or dragging of the cursor or object can continue in a particular direction specified by a velocity vector pointed in the direction of finger movement at the time the motion continuation mode is invoked, and having a magnitude proportional to the velocity of the finger at the time the motion continuation mode was invoked.