Abstract:
A transporter is adapted to transport a sheet in a first direction. At least three detectors are disposed at a downstream side of the transporter in the first direction. Each of the detectors is operable to detect passing time of a leading end edge of the sheet. A processor is operable to calculate: a first angle of the sheet with respect to the first direction based on a first difference of the passing time detected by first two of the detectors and a first distance between the first two of the detectors; and a second angle of the sheet with respect to the first direction based on a second difference of the passing time detected by second two of the detectors and a second distance between the second two of the detectors, and operable to detect a jam in case that a value of an angular difference between the first angle and the second angle is larger than a prescribed value.
Abstract:
A transporter is adapted to transport a sheet in a transport direction in a transport path that includes a detecting range. A measurer is disposed at an upstream end of the detecting range in the transport direction, and is operable to measure a moving distance of the sheet. A detector is disposed at a downstream end of the detecting range in the transport direction, and is operable to detect a leading end edge of the sheet. A processor is operable to detect a jam in case that the moving distance is longer than a distance of the detecting range in the transport direction while the leading end edge of the sheet is not detected by the detector.
Abstract:
A transporter is adapted to transport a sheet in a first direction. At least three detectors are disposed at a downstream side of the transporter in the first direction. Each of the detectors is operable to detect passing time of a leading end edge of the sheet. A processor is operable to calculate: a first angle of the sheet with respect to the first direction based on a first difference of the passing time detected by first two of the detectors and a first distance between the first two of the detectors; and a second angle of the sheet with respect to the first direction based on a second difference of the passing time detected by second two of the detectors and a second distance between the second two of the detectors, and operable to detect a jam in case that a value of an angular difference between the first angle and the second angle is larger than a prescribed value.
Abstract:
A sheet feeding device includes a setting roller, a motor, a flag, a setting guide, a setting-guide swinging device, and a locking mechanism. The motor generates a driving force to rotate the setting roller. The flap swings between a standby position and a feeding position, and, when at the standby position, does not allow transport of a sheet. The setting guide swings between a standby position and a feeding position, and, when at the standby position, separates a sheet from the setting roller. The setting-guide swinging device swings the setting guide using the driving force from the motor. The locking mechanism prevents the flap from swinging to the feeding position when the flap and the setting guide are in the respective standby positions.
Abstract:
A sheet feeding device includes a setting roller, a motor, a flag, a setting guide, a setting-guide swinging device, and a locking mechanism. The motor generates a driving force to rotate the setting roller. The flap swings between a standby position and a feeding position, and, when at the standby position, does not allow transport of a sheet. The setting guide swings between a standby position and a feeding position, and, when at the standby position, separates a sheet from the setting roller. The setting-guide swinging device swings the setting guide using the driving force from the motor. The locking mechanism prevents the flap from swinging to the feeding position when the flap and the setting guide are in the respective standby positions.
Abstract:
A sheet feeding apparatus includes a feeding unit capable of feeding a sheet-like medium, plural speed detecting units capable of respectively detecting a speed of the medium fed by the feeding unit, at plural positions along a width direction of the medium orthogonal to a feeding direction of the medium, and a bound-medium detecting unit capable of detecting the medium having a part thereof bound with another one of the medium, based on the speed detected respectively by the speed detecting units.
Abstract:
A transporter is adapted to transport a sheet in a transport direction in a transport path that includes a detecting range. A measurer is disposed at an upstream end of the detecting range in the transport direction, and is operable to measure a moving distance of the sheet. A detector is disposed at a downstream end of the detecting range in the transport direction, and is operable to detect a leading end edge of the sheet. A processor is operable to detect a jam in case that the moving distance is longer than a distance of the detecting range in the transport direction while the leading end edge of the sheet is not detected by the detector.
Abstract:
In a feeding apparatus, a control device determines whether a brake roller is rotating based on the result of detection by a rotating-state detection sensor while a medium is being transferred by a separator roller. When determining that the brake roller is not rotating, the control device sets a pickup roller to non-contact state where the pickup roller is not in contact with a medium on a feed tray while a medium is not being transferred by the separator roller.
Abstract:
A pick roller picks a sheet stacked in a hoper and transports the sheet toward a separating section at which a separator roller and a brake roller is provided. The separator roller and the brake roller transport the sheet one by one. A first unit is provided on the brake roller and is adapted to detect a rotation of the brake roller. A second unit is provided in the separating section and is adapted to detect a speed of the sheet. A controller is operable to determine an entry state of the sheet with respect to the separator roller based on presence or absence of the sheet in the separating section determined from the speed of the sheet in the separating section and whether or not the brake roller is rotating, and to optimally control a force acting in separation for the sheet.
Abstract:
A pick roller picks a sheet stacked in a hoper and transports the sheet toward a separating section at which a separator roller and a break roller is provided. The separator roller and the break roller transport the sheet one by one. A first unit is provided on the brake roller and is adapted to detect a rotation of the break roller. A second unit is provided in the separating section and is adapted to detect a speed of the sheet. A controller is operable to determine an entry state of the sheet with respect to the separator roller based on presence or absence of the sheet in the separating section determined from the speed of the sheet in the separating section and whether or not the brake roller is rotating, and to optimally control a force acting in separation for the sheet.