Abstract:
A method for processing enhanced dedicated channel (E-DCH) data in a wireless transmit/receive unit (WTRU) includes sending two messages. A first message is sent from a physical layer to a medium access control (MAC) layer, and triggers MAC layer processing of E-DCH data. A second message is sent from the MAC layer to the physical layer, and enables the physical layer to compute control parameters for physical layer processing of the E-DCH data before the MAC layer processing of the E-DCH data is completed.
Abstract:
The present application discloses a method and apparatus for using trusted platform modules (TPM) for integrity measurements of multiple subsystems. The state of the platform configuration registers (PCR) after boot up are stored as the base state of the system. Base state in this context is defined as the state of the system when the startup of the system is complete and can only be changed when new software is loaded at the kernel level. This state itself can be reported to challengers who are interested in verifying the integrity of the operating system. Also disclosed is a method where the application that is to be verified, requests that its state be extended from the base state of the system. When such a request is received, the state of the system is extended directly from the base state PCR contents and not from the system state.
Abstract:
An apparatus and methods that use trusted platform modules (TPM) to perform integrity measurements of multiple subsystems are disclosed. The state of platform configuration registers (PCRs) after boot up are stored as the base state of the system. In another embodiment, and application that is to be verified requests that its state be extended from the base state of the system. When such a request is received, the state of the system is extended directly from the base state PCR contents and not from the system state. In another embodiment, a virtual PCR is used, where such a virtual PCR uses a larger memory space than a conventional TPM provides for a physical PCR, by use of encrypted storage on external, protected memory.
Abstract:
In a wireless communication system using a reference channel used for error rate measurement and associated with a plurality of transport channels multiplexed on a coded composite transport channel (CCTrCH), a method is employed for reselection of the reference channel from favorable candidate transport channels. A channel is initially selected from the plurality of multiplexed channels as the reference channel. Channels are monitored based on quantitative data content criteria to determine whether an ON or OFF state exists. A different channel is selected from the plurality of multiplexed channels as the reselected RTrCH when a better candidate transport channel in the ON state becomes available, or when the monitored RTrCH reflects an OFF state.
Abstract:
Method and apparatus are disclosed for calculating a target connection frame number (CFN) for a data frame in wireless communications. An update to an offset between the CFN and a radio access network frame number is computed. A target CFN variable is incremented in response to a received timer signal. The value of an update variable is checked to determine whether a new value of the offset has been received since a previous update to the offset. A new target CFN is calculated using a current target CFN and the new value of the offset on a condition that the new value of the offset has been received. The current target CFN is set equal to the new target CFN.
Abstract:
A method for transmitting a data frame in a wireless communication system begins by creating a time of arrival (TOA) window, including a window start (WS) and a window end (WE). The TOA of the data frame at the air interface for transmission is determined, and further action is taken depending upon when the data frame arrives relative to the TOA window. The data frame is buffered if the TOA is before the WS. The data frame is transmitted if the TOA is within the TOA window. The data frame is discarded if the TOA is after the WE.
Abstract:
A method and apparatus for efficient operation of an enhanced dedicated channel (E-DCH) are disclosed. A physical layer processing includes computation of various control parameters followed by actual processing of the data to be transmitted. In accordance with the present invention, the computation of the control parameters is performed asynchronously from the associated data operation. A medium access control (MAC) layer provides information needed for computation of the control parameters to the physical layer as early as possible, while the data is being processed in parallel. The provided data includes a hybrid automatic repeat request (H-ARQ) profile, a transport block size, power offset, or the like. By sending this data to the physical layer before MAC-e processing is complete, the latency constraint can be significantly relaxed.
Abstract:
In a wireless communication system using a reference channel used for error rate measurement and associated with a plurality of transport channels multiplexed on a coded composite transport channel (CCTrCH), a method is employed for reselection of the reference channel from favorable candidate transport channels. A channel is initially selected from the plurality of multiplexed channels as the reference channel. Channels are monitored based on quantitative data content criteria to determine whether an ON or OFF state exists. A different channel is selected from the plurality of multiplexed channels as the reselected RTrCH when a better candidate transport channel in the ON state becomes available, or when the monitored RTrCH reflects an OFF state.
Abstract:
A wireless transmit/receive unit (WTRU) and a Node B, respectively, perform joint randomness not shared by others (JRNSO) measurement to generate JRNSO bits based on a channel estimate between the WTRU and the Node B. The WTRU and the Node B then perform a reconciliation procedure to generate a common JRNSO bits. The Node B sends the common JRNSO bits to a serving network. The WTRU and the SN secure a session key (such as an integrity key, a cipher key and an anonymity key), using the common JRNSO bits. The JRNSO measurements are performed on an on-going basis, and the session key is updated using a new set of common JRNSO bits. The JRNSO bits may be expanded by using a pseudorandom number generator (PNG) or a windowing technique. A handover may be intentionally induced to increase the JRNSO bits generation rate.
Abstract:
A method and apparatus for controlling reception of multimedia broadcast/multicast services (MBMS) at a wireless transmit/receive unit (WTRU) are disclosed. In order to control reception of an unwanted service of the MBMS, the WTRU is enabled or disabled for receiving MBMS in accordance with a user input. The unwanted service may be blocked at an application layer or at a lower layer. Either all services or a selected individual service may be blocked. The selection may be based on a type or priority of the content. The selection may be overridden for providing a certain service. To block the unwanted service, reception of an MBMS announcement message is disabled. Alternatively, an MBMS identity is prevented from being passed to a lower layer or is passed with a flag indicating that the unwanted service of the MBMS should not be processed.