摘要:
A high energy, e.g., ultraviolet (UV), catalyzed decomposing foam encapsulating a payload to be boosted in space provides an ultra-light weight, adaptable means to facilitate survival of much lighter, smaller satellites and space hardware under boost environment. The decomposable foam is to contain multiple satellites within a booster payload in lieu of the traditionally heavy and complex structural framework. The catalyzed decomposing foam significantly lowers the weight and structure of all space hardware. This packaging system is especially beneficial where several or even hundreds of satellites are required for a constellation system, thereby significantly benefiting all technologies applied in space, ranging from the telecommunication industry to DOD applications. In addition to weight and cost savings, advantages of this foam are many in that it is adaptable to any payload shape as it may be injected, sprayed, formed, molded, easily cut or manufactured to support any geometry required.
摘要:
A ceramic element, e.g., a sapphire dome, is joined to a metallic element, e.g., a vehicle body comprising a titanium alloy, by an attachment structure, e.g., comprising niobium. The attachment structure comprises: (1) a form-factored, compliant metallic transition element having a “C” shape; (2) a first joint material connecting an upper portion of the transition element to the ceramic element; and (3) a second joint material connecting a lower portion of the transition element to the metallic element. A method is provided for attaching the ceramic element to the metallic element, using a single brazing operation. The presence of the attachment structure further minimizes the stresses related to the different coefficients of thermal expansion in the ceramic/attachment/titanium connection.
摘要:
A high energy, e.g., ultraviolet (UV) catalyzed decomposing foam encapsulating kinetic media forms a payload to be boosted in space and provides an ultra-light weight means for intercepting an incoming missile or other target. The decomposed foam releases the kinetic media (at designed rates so as to preserve a required density of media on target) to intercept a target and destroy it. The use of the decomposing foam significantly lowers the weight and cost and improves the probability of success of destroying the target.