Abstract:
Programmable metallization memory cells include an electrochemically active electrode and an inert electrode and an ion conductor solid electrolyte material between the electrochemically active electrode and the inert electrode. An electrically insulating oxide layer separates the ion conductor solid electrolyte material from the electrochemically active electrode.
Abstract:
A method of forming a layer, the method including providing a substrate having at least one surface adapted for deposition thereon; and directing a particle beam towards the surface of the substrate, the particle beam including small molecule molecular species, wherein the small molecule molecular species break apart upon interaction with atoms at the substrate into atomic components, each of the atomic components having implant energies from about 20 eV to about 100 eV to form a layer.
Abstract:
An apparatus includes a ferroelectric layer and a polarization pattern configured in the ferroelectric layer to represent position data. The polarization pattern has a switchable polarization state domain and an unswitchable polarization state domain. A method includes providing a ferroelectric layer and establishing a polarization pattern in the ferroelectric layer to represent position data.
Abstract:
A process and device for making sputtered films with a linear scanning magnetron, wherein sputtering employs directionally emitting targets and “ballistic” transport to achieve controlled angular dispersion of incident particles with respect to the normal of the substrate. Sputter films made by this process can exhibit a high degree of step coverage over sub-micron, high aspect ratio substrate features and can fill high aspect ratio substrate features, for example, channels or vias.
Abstract:
A method of forming a layer, the method including providing a substrate having at least one surface adapted for forming a layer thereon; directing a particle beam towards the surface of the substrate, the particle beam including particles, wherein the particle beam has an angle of incidence with respect to the substrate, and is configured so that the particles have implant energies that are not greater than about 100 eV; changing the angle of incidence of the particle beam, the implant energy of the particles, or a combination thereof; and directing the particle beam towards the surface of the substrate a subsequent time, wherein the particles of the particle beam form a layer on the substrate.
Abstract:
Programmable metallization memory cells include an electrochemically active electrode and an inert electrode and an ion conductor solid electrolyte material between the electrochemically active electrode and the inert electrode. An electrically insulating oxide layer separates the ion conductor solid electrolyte material from the electrochemically active electrode.
Abstract:
Programmable metallization memory cells include an electrochemically active electrode and an inert electrode and an ion conductor solid electrolyte material between the electrochemically active electrode and the inert electrode. An electrically insulating oxide layer separates the ion conductor solid electrolyte material from the electrochemically active electrode.
Abstract:
Programmable metallization memory cells include an electrochemically active electrode and an inert electrode and an ion conductor solid electrolyte material between the electrochemically active electrode and the inert electrode. An electrically insulating oxide layer separates the ion conductor solid electrolyte material from the electrochemically active electrode.
Abstract:
Programmable metallization memory cells include an electrochemically active electrode and an inert electrode and an ion conductor solid electrolyte material between the electrochemically active electrode and the inert electrode. An electrically insulating oxide layer separates the ion conductor solid electrolyte material from the electrochemically active electrode.
Abstract:
A system that includes an ion source, the ion source configured to produce ions having a first energy; an extractor to extract the ions; an accelerator configured to accelerate the ions; a focusing and steering device configured to focus and/or steer the accelerated ions; and a decelerator configured to decelerate the accelerated ions so that the ions have a second energy when they impact a substrate, wherein the second energy is less than the first energy.