Abstract:
A spring assembly is provided for a yoke assembly of an electrical switching apparatus including a housing, separable contacts enclosed by the housing, and an operating mechanism structured to open and close the separable contacts. The operating mechanism includes a pole shaft. The yoke assembly is coupled to the pole shaft and is movable among first and second positions corresponding to the separable contacts being closed and open, respectively. The spring assembly includes a number of first springs having a first spring rate and being coupled to the yoke assembly, and a number of second springs having a second spring rate and being coupled to the yoke assembly. The second spring rate is different than the first spring rate. The number of first springs and the number of second springs bias the yoke assembly toward the second position.
Abstract:
Apparatus is provided for an electrical circuit breaker for preventing the handle thereof from being moved to the OFF position when the electrical contacts of the circuit breaker are welded closed. This apparatus mechanically limits the travel of the operating handle so that it may not be moved to the OFF position when the electrical contacts are closed. This restrictor apparatus as it is called is mechanically connected to, but out of direct contact with the handle arm of the circuit breaker. The mechanical linkage between the operating handle and the contact arm of the circuit breaker includes a projection. During the foregoing condition, the projection will interact with a crossbar assembly for the contact arm of the circuit breaker. If an attempt is made to move the handle to the OFF position while the contacts remain welded closed, the crossbar assembly is oriented with respect to the path of travel of the projection to prevent the projection from movement past the crossbar assembly and thus to prevent movement of the handle to the OFF position. If, however, the contacts are open as an attempt is made to move the handle to the OFF position, the crossbar assembly will become disposed differently relative to the path of travel of the projection such that the projection will freely move past the crossbar assembly thus allowing the handle mechanism to be moved completely to the OFF position.
Abstract:
The stored energy device interlock assembly provided is structured to prevent the closing assembly and/or the latch assembly from being actuated in selected configurations. The interlock assembly includes a latch D-shaft link assembly, an on-command paddle assembly, and an on-command paddle actuator. The latch D-shaft link assembly is pivotally coupled to, and structured to rotate, the latch assembly D-shaft. The on-command paddle assembly is structured to move the D-shaft link assembly. The on-command paddle actuator is structured to move the on-command paddle assembly. The interlock assembly is structured to disengage the latch assembly D-shaft from the on-command paddle assembly in selected configurations of the electrical switching apparatus. The interlock assembly provided herein has two pivotal degrees of freedom as opposed to a pivotal degree of freedom and a sliding degree of freedom.
Abstract:
The present invention provides for an electrical switching apparatus operating mechanism opening assembly wherein the toggle assembly stop/kicker pin has been separated into a kicker pin and a stop pin. By separating the functions of the stop/kicker pin into separate pins, the kicker pin may now be located at the pivot point of the associated link. Further, the kicker pin and the stop pin are now disposed upon a cradle assembly as opposed to an elongated link. The cradle assembly further supports one of the toggle assembly links. Thus, rotation of the cradle assembly causes the toggle assembly to move. The operating mechanism opening assembly is configured so that, when an associated latch assembly latch plate assembly is released, the cradle assembly rotates so that the toggle assembly is moved away from a closing assembly closing device.
Abstract:
A close latch interlock assembly is provided for an electrical switching apparatus, such as a circuit breaker, which includes a stored energy mechanism, such as a closing spring. The close latch interlock assembly includes a close D-shaft pivotable between a latched and unlatched positions corresponding to the closing spring being chargeable and discharged, respectively. An actuator is movable between an unactuated position corresponding to the close D-shaft being disposed in the latched position, and an actuated position corresponding to the close D-shaft being movable toward the unlatched position. A release member cooperates with the actuator and is pivotably coupled to the first end of a transfer link. The second end of the transfer link extends toward the close D-shaft. When the actuator is moved toward the actuated position, it moves the release member, thereby moving the transfer link and pivoting the close D-shaft toward the unlatched position.
Abstract:
The stored energy device interlock assembly provided is structured to prevent the closing assembly and/or the latch assembly from being actuated in selected configurations. The interlock assembly includes a latch D-shaft link assembly, an on-command paddle assembly, and an on-command paddle actuator. The latch D-shaft link assembly is pivotally coupled to, and structured to rotate, the latch assembly D-shaft. The on-command paddle assembly is structured to move the D-shaft link assembly. The on-command paddle actuator is structured to move the on-command paddle assembly. The interlock assembly is structured to disengage the latch assembly D-shaft from the on-command paddle assembly in selected configurations of the electrical switching apparatus. The interlock assembly provided herein has two pivotal degrees of freedom as opposed to a pivotal degree of freedom and a sliding degree of freedom.
Abstract:
A latch assembly for an electrical switching apparatus operating mechanism is provided. The latch assembly is structured so that force from the closing spring is directed along a line extending through the pivot point of a latch prop. A reset assembly for the latch prop is also provided.
Abstract:
A latch assembly for an electrical switching apparatus operating mechanism is provided. The latch assembly is structured so that force from the closing spring is directed along a line extending through the pivot point of a latch prop. A reset assembly for the latch prop is also provided.
Abstract:
The present invention provides for an electrical switching apparatus operating mechanism opening assembly wherein the toggle assembly stop/kicker pin has been separated into a kicker pin and a stop pin. By separating the functions of the stop/kicker pin into separate pins, the kicker pin may now be located at the pivot point of the associated link. Further, the kicker pin and the stop pin are now disposed upon a cradle assembly as opposed to an elongated link. The cradle assembly further supports one of the toggle assembly links. Thus, rotation of the cradle assembly causes the toggle assembly to move. The operating mechanism opening assembly is configured so that, when an associated latch assembly latch plate assembly is released, the cradle assembly rotates so that the toggle assembly is moved away from a closing assembly closing device.
Abstract:
A close latch interlock assembly is provided for an electrical switching apparatus, such as a circuit breaker, which includes a stored energy mechanism, such as a closing spring. The close latch interlock assembly includes a close D-shaft pivotable between a latched and unlatched positions corresponding to the closing spring being chargeable and discharged, respectively. An actuator is movable between an unactuated position corresponding to the close D-shaft being disposed in the latched position, and an actuated position corresponding to the close D-shaft being movable toward the unlatched position. A release member cooperates with the actuator and is pivotably coupled to the first end of a transfer link. The second end of the transfer link extends toward the close D-shaft. When the actuator is moved toward the actuated position, it moves the release member, thereby moving the transfer link and pivoting the close D-shaft toward the unlatched position.