摘要:
A shallow isolation trench structure and methods of forming the same wherein the method of formation comprises a layered structure of a buffer film layer over a dielectric layer that is atop a semiconductor substrate. The buffer film layer comprises a material that is oxidation resistant and can be etched selectively to oxide films. The layered structure is patterned with a resist material and etched to form a shallow trench. A thin oxide layer is formed in the trench and the buffer film layer is selectively etched to move the buffer film layer back from the corners of the trench. An isolation material is then used to fill the shallow trench and the buffer film layer is stripped to form an isolation structure. When the structure is etched by subsequent processing step(s), a capped shallow trench isolation structure that covers the shallow trench corners is created.
摘要:
A shallow isolation trench structure and methods of forming the same wherein the method of formation comprises a layered structure of a buffer film layer over a dielectric layer that is atop a semiconductor substrate. The buffer film layer comprises a material that is oxidation resistant and can be etched selectively to oxide films. The layered structure is patterned with a resist material and etched to form a shallow trench. A thin oxide layer is formed in the trench and the buffer film layer is selectively etched to move the buffer film layer back from the corners of the trench. An isolation material is then used to fill the shallow trench and the buffer film layer is stripped to form an isolation structure. When the structure is etched by subsequent processing step(s), a capped shallow trench isolation structure that covers the shallow trench corners is created.
摘要:
A semiconductor processing method of forming a conductive gate or gate line over a substrate includes, a) forming a conductive gate over a gate dielectric layer on a substrate, the gate having sidewalls and an interface with the gate dielectric layer; b) electrically insulating the gate sidewalls; and c) after electrically insulating the gate sidewalls, exposing the substrate to oxidizing conditions effective to oxidize at least a portion of the gate interface with the gate dielectric layer. According to one aspect of the invention, the step of exposing the substrate to oxidizing conditions is conducted after provision of a first insulating material and subsequent anisotropic etch thereof to insulate the gate sidewalls. According to another aspect of the invention, the step of exposing the substrate to oxidizing conditions is conducted after provision of first and second insulating materials and subsequent anisotropic etch thereof to insulate the gate sidewalls. According to another aspect of the invention, the step of exposing the substrate to oxidizing conditions is conducted after provision and subsequent anisotropic etch of a first insulating material, followed by provision and subsequent anisotropic etch of a second insulating material.
摘要:
A method for forming a gate stack which minimizes or eliminates damage to the gate dielectric layer and/or silicon substrate during the gate stack formation by the reduction of the temperature during formation. The temperature reduction prevents the formation of silicon clusters within the metallic silicide film in the gate stack which has been found to cause damage during the gate etch step. The present invention also includes methods for dispersing silicon clusters prior to the gate etch step.
摘要:
Methods of forming contact openings, memory circuitry, and dynamic random access memory (DRAM) circuitry are described. In one implementation, an array of word lines and bit lines are formed over a substrate surface and separated by an intervening insulative layer. Conductive portions of the bit lines are outwardly exposed and a layer of material is formed over the substrate and the exposed conductive portions of the bit lines. Selected portions of the layer of material are removed along with portions of the intervening layer sufficient to (a) expose selected areas of the substrate surface and to (b) re-expose conductive portions of the bit lines. Conductive material is subsequently formed to electrically connect exposed substrate areas with associated conductive portions of individual bit lines.
摘要:
A method for forming a gate stack which minimizes or eliminates damage to the gate dielectric layer and/or silicon substrate during the gate stack formation by the reduction of the temperature during formation. The temperature reduction prevents the formation of silicon clusters within the metallic silicide film in the gate stack which has been found to cause damage during the gate etch step. The present invention also includes methods for dispersing silicon clusters prior to the gate etch step.
摘要:
A method for forming a gate stack which minimizes or eliminates damage to the gate dielectric layer and/or silicon substrate during the gate stack formation by the reduction of the temperature during formation. The temperature reduction prevents the formation of silicon clusters within the metallic silicide film in the gate stack which has been found to cause damage during the gate etch step. The present invention also includes methods for dispersing silicon clusters prior to the gate etch step.
摘要:
The invention includes buried bit line memory circuitry, methods of forming buried bit line memory circuitry, and semiconductor processing methods of forming conductive lines. In but one implementation, a semiconductor processing method of forming a conductive line includes forming a silicon comprising region over a substrate. A TiNx comprising layer is deposited over the silicon comprising region, where “x” is greater than 0 and less than 1. The TiNx comprising layer is annealed in a nitrogen containing atmosphere effective to transform at least an outermost portion of the TiNx layer over the silicon comprising region to TiN. After the annealing, an elemental tungsten comprising layer is deposited on the TiN and at least the elemental tungsten comprising layer, the TiN, and any remaining TiNx layer is patterned into conductive line. In one implementation, a method such as the above is utilized in the fabrication of buried bit line memory circuitry. In one implementation, the invention comprises buried bit line memory circuitry fabricated by the above and other methods.
摘要:
Methods of forming contact openings, memory circuitry, and dynamic random access memory (DRAM) circuitry are described. In one implementation, an array of word lines and bit lines are formed over a substrate surface and separated by an intervening insulative layer. Conductive portions of the bit lines are outwardly exposed and a layer of material is formed over the substrate and the exposed conductive portions of the bit lines. Selected portions of the layer of material are removed along with portions of the intervening layer sufficient to (a) expose selected areas of the substrate surface and to (b) re-expose conductive portions of the bit lines. Conductive material is subsequently formed to electrically connect exposed substrate areas with associated conductive portions of individual bit lines.
摘要:
A conductive structure for use in a semiconductor device includes a multilayer structure. A first layer includes a material containing silicon, e.g., polysilicon and silicon germanide. A barrier layer is formed over the first layer, with the barrier layer including metal silicide or metal silicide nitride. A top conductive layer is formed over the barrier layer. The top conductive layer can include metal or metal suicide. Selective oxidation can be performed to reduce the amount of oxidation of selected materials in a structure containing multiple layers, such as the multilayer conductive structure. The selective oxidation is performed in a single-wafer rapid thermal processing system, in which a selected ambient, including hydrogen, is used to ensure low oxidation of a selected material, such as tungsten or a metal nitride.