Abstract:
A hydraulic system and method for controlling the brake of a wind turbine are provided. During operation of the wind turbine, pressurized working fluid in the hydraulic system is blocked from being supplied to the brake. Even if some of this fluid does reach the brake, it is drained to prevent a pressure build-up and activation. To activate the brake, this drainage is stopped and the pressurized fluid is supplied to the brake. The blocking and unblocking the pressurized working fluid may be controlled by first and second activation valves arranged in parallel in a supply line that communicates the working fluid to the brake.
Abstract:
The present invention relates to a pitch control system for operating the blade pitch of the rotor blades of a wind turbine generator. A method is disclosed wherein a command signal or pitch demand is applied to the blade pitch system of the rotor blades and the resulting response signal or pitch response is received. The received pitch response is compared to a reference and a signal indicative of a pitch system fault may be generated if a difference between the response signal and the reference is detected as being larger than a preset criterion. The deviating behaviour of a blade pitch system can thereby be detected which enables a testing or monitoring of the condition of the pitch system of the rotor blades of a wind turbine generator.
Abstract:
A method of controlling at least one wind turbine blade during the stopping process of the rotor in a wind turbine system is disclosed. The method optimizes the control velocity of the process in response to one or more feedback values of the system and/or one or more feedback values from the surroundings of the system by altering the angular pitch velocity from 10°/sec during the initial stage of the stopping process to 5°/sec at the final stage of the stopping process. A control system and a wind turbine as well as use hereof are also disclosed.
Abstract:
A pitch system (20) for rotating a blade (4) of a wind turbine relative to a hub (6) generally comprises a bearing (22) having an inner bearing ring (30) configured to be mounted to the hub and an outer bearing ring (32) configured to be mounted to the blade. A first coupling member (24) positioned between the hub and inner bearing ring extends radially inward. A second coupling member (26) positioned between the blade and outer bearing ring extends radially inward and over the inner bearing ring. A drive system (28) includes a first drive member (34) coupled to the first coupling member and a first driven member (36) coupled to the second coupling member. The first drive member is configured to move the first driven member to rotate the outer bearing ring relative to the inner bearing ring and thereby pitch the blade.
Abstract:
A pitch system (20) for rotating a blade (4) of a wind turbine relative to a hub (6) generally comprises a bearing (22) having an inner bearing ring (30) configured to be mounted to the hub and an outer bearing ring (32) configured to be mounted to the blade. A first coupling member (24) positioned between the hub and inner bearing ring extends radially inward. A second coupling member (26) positioned between the blade and outer bearing ring extends radially inward and over the inner bearing ring. A drive system (28) includes a first drive member (34) coupled to the first coupling member and a first driven member (36) coupled to the second coupling member. The first drive member is configured to move the first driven member to rotate the outer bearing ring relative to the inner bearing ring and thereby pitch the blade.
Abstract:
A method of controlling at least one wind turbine blade during the stopping process of the rotor in a wind turbine system is disclosed. The method optimizes the control velocity of the process in response to one or more feedback values of the system and/or one or more feedback values from the surroundings of the system by altering the angular pitch velocity from 10°/sec during the initial stage of the stopping process to 5°/sec at the final stage of the stopping process. A control system and a wind turbine as well as use hereof are also disclosed.
Abstract:
A wind turbine (1) comprising equipment under control is presented, which comprises at least one control system (14, 14A, 14B) for one or more of said main components, (5, 7, 9) of the wind turbine. The control system (14A) is multiplied by at least one further control system (14B) for controlling the same of said equipment under control. A control arrangement, a method as well as uses hereof are also presented.
Abstract:
A method of controlling at least one wind turbine blade during the stopping process of the rotor in a wind turbine system is disclosed. The method optimizes the control velocity of the process in response to one or more feedback values of the system and/or one or more feedback values from the surroundings of the system by altering the angular pitch velocity from 10°/sec during the initial stage of the stopping process to 5°/sec at the final stage of the stopping process. A control system and a wind turbine as well as use hereof are also disclosed.
Abstract:
A hydraulic system and method for controlling the brake of a wind turbine are provided. During operation of the wind turbine, pressurized working fluid in the hydraulic system is blocked from being supplied to the brake. Even if some of this fluid does reach the brake, it is drained to prevent a pressure build-up and activation. To activate the brake, this drainage is stopped and the pressurized fluid is supplied to the brake. The blocking and unblocking the pressurized working fluid may be controlled by first and second activation valves arranged in parallel in a supply line that communicates the working fluid to the brake.