Abstract:
An apparatus includes a data storage media and a plurality of heads, the data storage media and heads being structured and arranged for relative movement between the heads and storage media causing the heads to move along a scan path, and an actuator for changing a magnitude of head to media force as the heads move along the scan path. A method for reducing head motion hysteresis is also provided.
Abstract:
An apparatus includes a data storage media and a plurality of heads, the data storage media and heads being structured and arranged for relative movement between the heads and storage media causing the heads to move along a scan path, and an actuator for changing a magnitude of head to media force as the heads move along the scan path. A method for reducing head motion hysteresis is also provided.
Abstract:
An apparatus comprises a storage medium, a substrate separated from the storage medium by a gap, and a plurality of spacers defining a distance between the storage medium and the substrate, wherein the spacers include a curved end.
Abstract:
In certain embodiments, an apparatus includes a first piezoelectric (PZT) element poled in the same direction as a second PZT element. The first and second PZT elements are configured to be driven while simultaneously sensing motion. The apparatus further includes a circuit configured to add outputs of the first and second PZT elements, extract the sensed motion, and detect off-track motion from the extracted sensed motion.
Abstract:
A flow control plate (152) for a disk drive is disclosed. The flow control plate (152) includes both a diffuser section (156) and an air displacement section (168). The diffuser section (156) is contained within a pocket (160) having a plurality of spaced protuberances or ridges (164). The air displacement section (168) may be located upstream of the diffuser section (156) and includes a pair of flat primary surfaces (172) that are disposed in opposing and parallel relation. In one embodiment, the flow control plate (152) is an integral structure and is fabricated from a resinous material.
Abstract:
An apparatus includes a movable member, and first and second actuators coupled to the movable member at positions offset from a first axis that passes through a centroid of the movable member. A controller independently controls the first and second actuators to exert a first force on the movable member in a direction generally parallel to the first axis, thereby controlling both linear and rotational orientation of the movable member. The apparatus can further include third and fourth actuators coupled to the movable member at positions offset from a second axis that passes through the centroid of the movable member, and the controller can independently controlling third and fourth actuators.
Abstract:
In certain embodiments, an apparatus includes a first piezoelectric (PZT) element poled in the same direction as a second PZT element. The first and second PZT elements are configured to be driven while simultaneously sensing motion. The apparatus further includes a circuit configured to add outputs of the first and second PZT elements, extract the sensed motion, and detect off-track motion from the extracted sensed motion.
Abstract:
In certain embodiments, a slider includes an air bearing surface having a cavity. The cavity includes transition features at an upstream side of the cavity to mitigate air flow expansion along the cavity. Turbulence-inducing features are positioned on the transition features.
Abstract:
An apparatus comprises a storage medium, a substrate separated from the storage medium by a gap, and a plurality of spacers defining a distance between the storage medium and the substrate, wherein the spacers include a curved end.
Abstract:
An apparatus includes a movable member, and first and second actuators coupled to the movable member at positions offset from a first axis that passes through a centroid of the movable member. A controller independently controls the first and second actuators to exert a first force on the movable member in a direction generally parallel to the first axis, thereby controlling both linear and rotational orientation of the movable member. The apparatus can further include third and fourth actuators coupled to the movable member at positions offset from a second axis that passes through the centroid of the movable member, and the controller can independently controlling third and fourth actuators.