Abstract:
A nozzle plate for ink jet cartridges which are manufactured from a relatively thin film of material, such as, for example, polyimide, polyarylene ether, or composite of a number of materials deposited on a rigid substrate, such as a silicon wafer, and photolithographically processed from the rigid substrate to produce a large quantity of interconnected nozzle plates which may be removed as a sheet of interconnected nozzle plates for ease of handling. The nozzle plates are aligned and bonded to the nozzle bearing front faces of the cartridges.
Abstract:
An improved ink jet printhead comprising upper and lower substrates that are mated and bonded together with a thick film insulative layer sandwiched therebetween. One surface of the upper substrate has etched therein one or more grooves and a recess which when mated with the lower substrate will serve as capillary filled ink channels and ink supply manifold, respectively. The grooves are open at one end and closed at the other. The open ends serve as nozzles. The manifold recess is adjacent the grooved closed ends. Each channel has a heating element located upstream of the nozzle. The heating elements are selectively addressable by input signals representing digitized data signals to produce ink vapor bubbles. The growth and collapse of the bubbles expel ink droplets from the nozzles and propel them to a recording medium. A recess patterned in the thick layer provides a flow path for the ink from the manifold to the channels by enabling the ink to flow around the closed ends of the channels and increase the flow area to the heating elements. Thus, the heating elements lie at the distal end of the recesses so that a vertical wall of elongated recess prevents air ingestion while it increases the ink channel flow area and increases refill time, resulting in an increase in bubble generation rate.
Abstract:
A bubble jet printing device is optimized for extended operation by preventing heat buildup within the printhead and ink supply. Several configurations provides for the addition of heat sinks of appropriate dimensions either directly to the printhead or to an electrode board bonded to the printhead. Plated holes through the electrode board increase heat flow away from the printhead. According to another aspect of the invention, the ink supply cartridge has thermally conductive particles dispersed therethrough to effectively increase its capacity to radiate heat away from the printhead.
Abstract:
A storage buffer for a moving web comprises a collection bin having an opening through which the web can be randomly dumped under the influence of gravity; means for floating randomly dumped web within the collection bin upon a cushion of gas without mechanical support of said web; a web exit within a wall of said collection bin; and means for guiding pressurized gas over web passing through the web exit.
Abstract:
Lithographic masters for improved image quality in direct printing process are provided. The masters are formed with a relatively soft elastomeric or resilient layer on a suitable supporting master substrate. An image layer of up to 2.5 microns is supported by the resilient layer. A resilient blanket supports the printing master or receiver sheet.
Abstract:
An ink jet printhead is disclosed which has a heater plate containing the heating elements and driving circuitry means monolithographically formed on one surface thereof and the ink flow directing channel structure is formed on the heater plate using a layer of patternable polymeric material which, in one embodiment, is exposed using a mask to define the channel pattern then developed and cured. After curing, the patterned channel structure is polished to provide a smooth coplanar surface and a cover plate with an aperture therein is aligned and bonded to the channel structure to complete the printhead. The aperture serves as both ink inlet and a portion of the ink reservoir. The channels are open at one end and serve as the droplet ejecting nozzles, while the other ends are closed and extend beneath the cover plate aperture to provide a baffled portion of the ink reservoir and prevent cross-talk between the ink channels. In another embodiment, the channels ends opposite the nozzles open into a common recess with the channels walls extending therein to function as baffles and prevent cross-talk.
Abstract:
A thermal ink jet printer including a frame, a printhead mounted to the frame for printing ink images onto a heated and supported substrate, and an efficient substrate heating and supporting assembly mounted to the frame. The efficient substrate heating and supporting assembly includes a heating device, and a substrate supporting member having a front surface including a substrate supporting area for supporting substrates of various sizes one at a time and border areas having a polished finish. The efficient substrate heating and supporting assembly also includes a heat absorbing back surface facing the heating device. The heat absorbing back surface includes an increased heat absorbing area located opposite and centered relative to the substrate supporting area on the front surface. The increased heat absorbing area, relative to a rest of the back surface, has a coat of paint thereon for increasing heat absorption thereinto from the heating device, thereby resulting advantageously in relatively nonuniform heat absorption into the back surface, and relatively in more uniform, adequate and efficient substrate heating and drying temperatures on the front surface, when continuously running a most often run size of substrates.
Abstract:
A thermal ink jet printhead is disclosed having an ink channel geometry that controls the location of the bubble collapse on the heating elements. The ink channels provide the flow path between the printhead ink reservoir and the printhead nozzles. In one embodiment, the heating elements are located in a pit a predetermined distance upstream from the nozzle. The channel portion upstream from the heating element has a length and a cross-sectional flow area that is adjusted relative to the channel portion downstream from the heating element, so that the upstream and downstream portions of channel have substantially equal ink flow impedances. This results in controlling the location of the bubble collapse on the heating element to a location substantially in the center of the heating elements.
Abstract:
An improved thermal ink jet printhead has a plurality of heating elements in ink channels selectively addressable by electrical signals to eject ink droplets from nozzles located at one end of the ink channels on demand. The heating elements each have a passivated layer of resistive material that has non-uniform sheet resistance in a direction transverse to the direction of ink in the channels. The non-uniform sheet resistance provides a substantially uniform temperature across the width of the resistive layer, so that the power required to eject a droplet is reduced and the droplet size dependence on electrical signal energy is eliminated.
Abstract:
A dryer uses a two-phase drying system having a brief water condensation interval, followed by impinging parallel laminar recirculating hot air jets which impinge on wet ink to increase the copy rate of inkjet printing and to increase the quality of the printed image.