摘要:
An aluminum electrolytic cell having cathode carbon block with columnar protrusions embedded on its upper surface is disclosed. The columnar protrusions are arranged into two rows or three rows in the length direction of the upper surface of the carbon block. Two adjacent rows of columnar protrusions are crisscross arranged, and the columnar protrusions of the cathode carbon block are immersed in the aluminum liquid. The pot holes in the positions of the cathode carbon block substrate and the upper surface of the cathode carbon block substrate where columnar protrusions are embedded can be one-step molded by vibration molding or compression molding, and can be made by machining as well.
摘要:
Disclosed is an aluminum electrolytic cell having profiled cathode carbon blocks structures, comprising a cell case, a refractory material installed on the bottom, an anodes and a cathode. The cathode carbon blocks include a profiled structure having projections on the top surface of the carbon blocks, that is, a plurality of projections are formed on a surface of the cathode carbon blocks. The aluminum electrolytic cell having the cathode structure according to the present invention can reduce the velocity of the flow and the fluctuation of the level of the cathodal molten aluminum within the electrolytic cell, so as to increase the stability of the surface of molten aluminum, reduce the molten lose of the aluminum, increase the current efficiency, reduce the inter electrode distance, and reduce the energy consumption of the production of aluminum by electrolysis. With the above configuration, compounds or precipitates of viscous cryolite molten alumina can be formed on the lower portion between walls protruding on the upper surface of the cathode, which can prohibit the molten aluminum from flowing into the cell bottom through the cracks and apertures on cathodes, so that the life of the electrolytic cell can be extended.
摘要:
Disclosed is an aluminum electrolytic cell having profiled cathode carbon blocks structures, comprising a cell case, a refractory material installed on the bottom, an anodes and a cathode. The cathode carbon blocks include a profiled structure having projections on the top surface of the carbon blocks, that is, a plurality of projections are formed on a surface of the cathode carbon blocks. The aluminum electrolytic cell having the cathode structure according to the present invention can reduce the velocity of the flow and the fluctuation of the level of the cathodal molten aluminum within the electrolytic cell, so as to increase the stability of the surface of molten aluminum, reduce the molten lose of the aluminum, increase the current efficiency, reduce the inter electrode distance, and reduce the energy consumption of the production of aluminum by electrolysis. With the above configuration, compounds or precipitates of viscous cryolite molten alumina can be formed on the lower portion between walls protruding on the upper surface of the cathode, which can prohibit the molten aluminum from flowing into the cell bottom through the cracks and apertures on cathodes, so that the life of the electrolytic cell can be extended.
摘要:
An aluminum electrolytic cell with a new type of cathode structure for shortening vertical fluctuations and horizontal fluctuations includes an electrolytic cell shell, cell lining, refractory material, cathode carbon blocks, lined carbon bricks, carbon ramming paste, refractory concrete and cathode steel bars. More than one convex structure protrudes from the top surface of the cathode carbon blocks and integrates with the cathode carbon blocks. The convex structure are arrayed to be parallel or vertical with the axis of the cathode carbon blocks or to be mixed with the above two.