摘要:
A microelectronic assembly (10) includes a polymeric card (12) that includes a substantially planar major surface (18). An integrated circuit component (14) is embedded in the polymeric card (12) and has a first contact (20) and a second contact (22). An antenna element (16) is formed of a singular metallic strip and includes a first terminal (26) electrically connected to the first contact (20), a second terminal (28) electrically connected to the second contact (22), and a loop (30) intermediate the first terminal (26) and the second terminal (28). The first terminal (26) includes a first outer surface (32) and the second terminal (28) includes a second outer surface (34). The first outer surface (32) and the second outer surface (34) are exposed at the major surface (18) and are coextensive therewith. The loop (30) is embedded within the polymeric card (12) and spaced apart from the major surface (18).
摘要:
An alkaline gel electrolyte for an electrochemical cell is based on a polymeric binder of polyvinyl alcohol or polyvinyl acetate. Potassium hydroxide and/or sodium hydroxide is blended into the polymeric binder or matrix, and the resulting solution is used to cast a film that is useful as a gel electrolyte. The hydroxide in the solution is between about 1% to 25% by weight, and the polymer concentration is between about 0.5% to 10% by weight. The resulting gel electrolyte film contains between 10 to 90% water by weight. A nickel or iron porphine modifier may be added in an amount between about 1 to 1000 parts per million. The alkaline gel electrolyte is useful in combination with asymmetric inorganic electrodes to make electrochemical cells, and can also function as a separator. Improved power density and higher cycle life is achieved with the gel electrolyte.
摘要:
Method for making high power electrochemical capacitors (28) provides for depositing an electrically polymer (18) and (20) onto a substrate (12) which has been treated so as to form nitride layers (14) and (16) on exposed surfaces thereof. Such electrochemical capacitors provide for high power high energy devices without the short comings of excessive equivalent series resistance nor the expense of noble metal substrates as have been typically been used.