-
公开(公告)号:US20130185008A1
公开(公告)日:2013-07-18
申请号:US13822521
申请日:2011-07-14
IPC分类号: G01R31/36
CPC分类号: G01R31/36 , G01R31/3651 , G01R31/3662 , G01R31/3679 , H01M10/486
摘要: A parameter estimation device using a filter has a preprocessing computing means 6, a state estimating means 7 and a state-of-charge estimating means 9. A low-pass filter 61 of the preprocessing computing means 6 transfers voltage preprocessing value Vp and current preprocessing value Ip from inputted discharge-and-charge current value I and terminal voltage value V, respectively. The state estimating means 7 estimates parameters of a state equation of a battery equivalent model 7A based on the battery equivalent model 7A containing a resistance and a capacitor from the voltage preprocessing value and the current preprocessing value inputted from the means 6. The state-of-charge estimating means 9 estimates the state of charge from state quantity obtained by the means 7. The time constant varies in such a way that the higher the temperature and the state of charge SoC becomes the smaller the time constant becomes.
摘要翻译: 使用滤波器的参数估计装置具有预处理计算装置6,状态估计装置7和充电状态估计装置9.预处理计算装置6的低通滤波器61将电压预处理值Vp和当前预处理 输入的放电和充电电流值I和端子电压值V分别为值Ip。 状态估计单元7基于从电压预处理值和从单元6输入的当前预处理值,基于包含电阻和电容器的电池当量模型7A来估计电池当量模型7A的状态方程式的参数。状态 充电估计装置9根据由装置7获得的状态量来估计充电状态。时间常数以这样的方式变化,使得温度和充电状态SoC变得越小,时间常数变得越小。
-
公开(公告)号:US20110231124A1
公开(公告)日:2011-09-22
申请号:US13131348
申请日:2009-11-12
申请人: Kinnosuke Itabashi
发明人: Kinnosuke Itabashi
CPC分类号: G01R31/3651 , G01R31/3662 , H01M10/052 , H01M10/482
摘要: In a battery model identification method of the present invention, an M-sequence input electric current production part 2 inputs M-sequence signals with different frequency components as an electric current input into the battery 4. In this occasion, terminal voltage of the battery is measured by a voltage sensor 5, and a parameter estimation part 3 executes system identification based on the measured result to calculate frequency characteristics of the battery. Resistance components Rb, R1-R3 and capacitance components C1-C3 as parameters of a battery model 7 are identified based on the calculated frequency characteristics.
摘要翻译: 在本发明的电池模型识别方法中,M序列输入电流产生部分2输入具有不同频率分量的M序列信号作为输入到电池4的电流。在这种情况下,电池的端电压为 由电压传感器5测量,参数估计部3基于测量结果执行系统识别,以计算电池的频率特性。 基于计算出的频率特性来识别作为电池模型7的参数的电阻分量Rb,R1-R3和电容分量C1-C3。
-
公开(公告)号:US09784794B2
公开(公告)日:2017-10-10
申请号:US13822521
申请日:2011-07-14
CPC分类号: G01R31/36 , G01R31/3651 , G01R31/3662 , G01R31/3679 , H01M10/486
摘要: A parameter estimation device using a filter includes a preprocessing computing circuit, a state estimating circuit and a state-of-charge estimating circuit. A low-pass filter of the preprocessing computing circuit transfers the voltage preprocessing value and the current preprocessing value from inputted discharge-and-charge current value and terminal voltage value, respectively. The state estimating circuit estimates parameters of a state equation of a battery equivalent model based on the battery equivalent model containing a resistance and a capacitor from the voltage preprocessing value and the current preprocessing value inputted. The state-of-charge estimating circuit estimates the state of charge from state quantity obtained. The time constant varies in such a way that the higher the temperature and the state of charge becomes the smaller the time constant becomes.
-
公开(公告)号:US08655612B2
公开(公告)日:2014-02-18
申请号:US13131348
申请日:2009-11-12
申请人: Kinnosuke Itabashi
发明人: Kinnosuke Itabashi
IPC分类号: G01R31/36
CPC分类号: G01R31/3651 , G01R31/3662 , H01M10/052 , H01M10/482
摘要: In a battery model identification method of the present invention, an M-sequence input electric current production part inputs M-sequence signals with different frequency components as an electric current input into the battery. In this occasion, terminal voltage of the battery is measured by a voltage sensor, and a parameter estimation part executes system identification based on the measured result to calculate frequency characteristics of the battery. Resistance components and capacitance components as parameters of a battery model are identified based on the calculated frequency characteristics.
摘要翻译: 在本发明的电池模型识别方法中,M序列输入电流产生部件输入具有不同频率分量的M序列信号作为输入到电池中的电流。 在这种情况下,电池的端子电压由电压传感器测量,并且参数估计部分基于测量结果执行系统识别,以计算电池的频率特性。 基于所计算的频率特性来识别作为电池模型的参数的电阻分量和电容分量。
-
-
-