Abstract:
An illumination system, a projection device, and an illumination method are provided. The illumination system includes a polarized light source, a polarization switching element, a beam splitting element, a wavelength conversion element, a reflective element, and a wave plate. The polarized light source emits a polarized light beam with a first color. The polarization switching element switches a polarized direction of the polarized light beam at different time points. The beam splitting element separates polarized light beams having different polarized directions. The wavelength conversion element converts the polarized light beam having a first polarized direction to a converted light beam. The reflective element reflects the polarized light beam having a second polarized direction to form a reflected light beam. The beam splitting element combines the converted light beam and the reflected light beam comes from the wave plate disposed between the beam splitting element and the reflective element.
Abstract:
An illumination system includes a light source module, a chromaticity-adjusting light source and a light-combining element. The light source module provides a first color light beam, a second color light beam and a third color light beam. The chromaticity-adjusting light source provides a chromaticity-adjusting light beam. The light-combining element is disposed on the transmission paths of the chromaticity-adjusting light beam and the color light beams provided by the light source module to combine the color light beams with the chromaticity-adjusting light beam into an illumination beam.
Abstract:
An illumination system including a coherent light source, a light integrator and a first actuator is provided. The coherent light source is capable of providing an illumination beam. The light integrator is disposed on a transmission path of the illumination beam, and the first actuator is connected to the light integrator. The light integrator has a light entering end and a light exit end opposite to the light entering end, and the light entering end faces the coherent light source. The first actuator is capable of driving the light integrator to move and/or rotate, so as to change a position at the light entering end entered by the illumination beam.
Abstract:
An illumination system includes a light source module, a chromaticity-adjusting light source and a light-combining element. The light source module provides a first color light beam, a second color light beam and a third color light beam. The chromaticity-adjusting light source provides a chromaticity-adjusting light beam. The light-combining element is disposed on the transmission paths of the chromaticity-adjusting light beam and the color light beams provided by the light source module to combine the color light beams with the chromaticity-adjusting light beam into an illumination beam.
Abstract:
An illumination system includes a point light source array, a lens and a collimating lens. The collimating lens is disposed between the point light source array and the lens. The point light source array is suitable for emitting a planar light source and both the lens and the collimating lens are disposed on the optical path of the planar light source. Besides, the lens has two different focal lengths in a first axis and a second axis. The present invention further provides a projection apparatus employing the illumination system.
Abstract:
A traffic signal lamp includes a plurality of light emitting diodes and two lens sets. A first lens set has an entrance surface comprising a plurality of convex cylindrical surfaces running in a vertical direction and an exit surface comprising a plurality of slanted surface segments running in a horizontal direction. A second lens set has an entrance surface comprising a plurality of elongated concave cylindrical surfaces running in the vertical direction and an convex exit surface having a small curvature. The first lens set collimates light in the horizontal direction and limits light in a viewing angle in the vertical direction. The second lens set redistributes light uniformly in a viewing angle in the horizontal direction.
Abstract:
An optical module including a first integration rod, a polarization beam splitting unit, a first reflector, a first quarter-wave plate, and a light source is provided. The first integration rod has a first end and a second end opposite to each other. The polarization beam splitting unit is disposed at a side of the first end. The polarization beam splitting unit reflects a beam with a first polarization direction and allows a beam with a second polarization direction to pass through. The first reflector is disposed at a side of the second end. The first quarter-wave plate is disposed between the polarization beam splitting unit and the first reflector. The light source provides a light beam to the polarization beam splitting unit. The light beam includes a first polarization beam with the first polarization direction. The polarization beam splitting unit reflects the first polarization beam to the first integration rod.
Abstract:
An illumination system, a projection device, and an illumination method are provided. The illumination system includes a polarized light source, a polarization switching element, a beam splitting element, a wavelength conversion element, a reflective element, and a wave plate. The polarized light source emits a polarized light beam with a first color. The polarization switching element switches a polarized direction of the polarized light beam at different time points. The beam splitting element separates polarized light beams having different polarized directions. The wavelength conversion element converts the polarized light beam having a first polarized direction to a converted light beam. The reflective element reflects the polarized light beam having a second polarized direction to form a reflected light beam. The beam splitting element combines the converted light beam and the reflected light beam comes from the wave plate disposed between the beam splitting element and the reflective element.
Abstract:
A light combination device includes a reflective element and a first color separating element. The reflective element guides first color light beams emitted from at least a first light source and a second light source to propagate in a first direction. The first light source and the second light source are differently positioned in a space. The first color separating element transmits the first color light beams and reflects second color light beams emitted from at least a third light source and a fourth light source. The third light source and the fourth light source are differently positioned in the space. The first color separating element has a coating curved surface, and a curvature of the coating curved surface is varied according to positions of the third light source and the fourth light source to guide the second color light beams to propagate in the first direction.
Abstract:
An illumination system includes a coherent light source providing an illumination beam, a light integrator positioned on a transmission path of the illumination beam, and a first actuator connected to the light integrator. The light integrator has a light entering end and a light exit end opposite to the light entering end, and the light entering end faces the coherent light source. The first actuator is capable of driving the light integrator to about a rotation axis perpendicular to a light axis of the illumination beam passing through the light integrator, so as to change a position at the light entering end entered by the illumination beam.