Visualization of Uncertain Times Series
    1.
    发明申请
    Visualization of Uncertain Times Series 审中-公开
    不确定时代系列的可视化

    公开(公告)号:US20130194271A1

    公开(公告)日:2013-08-01

    申请号:US13361416

    申请日:2012-01-30

    IPC分类号: G06T11/20

    CPC分类号: G06T11/00 G06T11/20

    摘要: Implementations of the present disclosure include methods, systems, and computer-readable storage mediums for receiving a probability distribution function model, the probability distribution function model representing an uncertain time series and providing a plurality of probability distribution functions, each probability distribution function corresponding to respective values at a respective time in the uncertain time series, generating a visualization based on the probability distribution function model to create a transparency gradient, the transparency gradient including a plurality of points graphically representing the plurality of probability distribution functions, and displaying the visualization including the transparency gradient, wherein a visual characteristic of each point of the plurality of points of the transparency gradient is a function of a probability of the respective value associated with the respective point.

    摘要翻译: 本公开的实现包括用于接收概率分布函数模型的方法,系统和计算机可读存储介质,表示不确定时间序列并提供多个概率分布函数的概率分布函数模型,每个概率分布函数对应于 在不确定时间序列中的相应时间的值,基于所述概率分布函数模型生成可视化以创建透明度梯度,所述透明度梯度包括以图形方式表示所述多个概率分布函数的多个点,以及显示包括 透明度梯度,其中透明度梯度的多个点的每个点的视觉特征是与各个点相关联的各个值的概率的函数。

    Approximate representation and processing of arbitrary correlation structures for correlation handling in databases
    2.
    发明授权
    Approximate representation and processing of arbitrary correlation structures for correlation handling in databases 有权
    数据库中相关处理的任意相关结构的近似表示和处理

    公开(公告)号:US08356022B2

    公开(公告)日:2013-01-15

    申请号:US12879605

    申请日:2010-09-10

    申请人: Katrin Eisenreich

    发明人: Katrin Eisenreich

    IPC分类号: G06F17/30

    CPC分类号: G06Q40/04 G06Q40/06

    摘要: Implementations of the present disclosure include receiving user input, the user input indicating a distribution type and a correlation factor, providing the distribution type and correlation factor for identifying an approximate correlation representation (ACR) histogram from a plurality of ACR histograms based on the distribution type and the correlation factor, receiving the ACR histogram, retrieving a first distribution associated with a first uncertain value and a second distribution associated with a second uncertain value from computer-readable memory, processing the ACR histogram, the first distribution and the second distribution to generate a correlation histogram that represents a correlation between the first uncertain value and the second uncertain value, and displaying the correlation histogram on a display.

    摘要翻译: 本公开的实现包括接收用户输入,指示分布类型和相关因子的用户输入,基于分布类型提供用于从多个ACR直方图中识别近似相关表示(ACR)直方图的分布类型和相关因子 接收ACR直方图,从计算机可读存储器检索与第一不确定值相关联的第一分布和与第二不确定值相关联的第二分布,处理ACR直方图,第一分布和第二分布以产生 相关直方图,其表示第一不确定值和第二不确定值之间的相关性,并且在显示器上显示相关直方图。

    Generating hash values
    3.
    发明授权

    公开(公告)号:US09817858B2

    公开(公告)日:2017-11-14

    申请号:US14565715

    申请日:2014-12-10

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30371

    摘要: The present disclosure involves systems, software, and computer implemented methods for generating a hash identifier. One example method includes: identifying a record to include in a table, the record associated with two or more primary key fields that are concatenated to create a concatenated key, wherein the table includes one or more hash columns for storing hash identifiers; applying a hash function to the concatenated key to create a new hash value; determining whether a record in the table has a hash value matching the new hash value; in response to determining that a hash value of a record matches the new hash value and the concatenated key of the identified record does not match the concatenated key of any existing record, adding a counter to the new hash value to generate a unique hash ID; and storing the record, including the unique hash ID, in the table.

    Granularity-adaptive extraction of correlation structures in databases
    4.
    发明授权
    Granularity-adaptive extraction of correlation structures in databases 有权
    数据库中相关结构的粒度自适应提取

    公开(公告)号:US08473474B1

    公开(公告)日:2013-06-25

    申请号:US13432786

    申请日:2012-03-28

    申请人: Katrin Eisenreich

    发明人: Katrin Eisenreich

    IPC分类号: G06F17/30 G06F7/00

    CPC分类号: G06N7/005

    摘要: Implementations include generating a first plurality of univariate distributions based on known data stored in a computer-readable database, each univariate distribution of the plurality of distributions comprising an arbitrary distribution, processing the univariate distributions and the known data to generate an empirical ACR provided as a multi-dimensional histogram, storing the empirical ACR in the computer-readable database, retrieving, from computer-readable memory, a second plurality of univariate distributions, each univariate distribution in the second plurality of univariate distributions being associated with a respective set of uncertain values that are to be correlated to a respective set of uncertain values associated with one or more other univariate distributions in the second plurality of univariate distributions, processing the empirical ACR and the second plurality of univariate distributions to generate a correlation histogram that represents a correlation between the respective sets of uncertain values and storing the correlation histogram in the computer-readable database.

    摘要翻译: 实现包括基于存储在计算机可读数据库中的已知数据生成第一多个单变量分布,包括任意分布的多个分布的每个单变量分布,处理单变量分布和已知数据以生成作为 多维直方图,将经验ACR存储在计算机可读数据库中,从计算机可读存储器检索第二多个单变量分布,第二多个单变量分布中的每个单变量分布与相应的一组不确定值相关联 其将与与第二多个单变量分布中的一个或多个其他单变量分布相关联的相应组的不确定值相关联,处理经验ACR和第二多个单变量分布以产生表示t的相关性的相关直方图 他的各种不确定值,并将相关直方图存储在计算机可读数据库中。

    GENERATING HASH VALUES
    5.
    发明申请
    GENERATING HASH VALUES 有权
    生成哈希值

    公开(公告)号:US20160171039A1

    公开(公告)日:2016-06-16

    申请号:US14565715

    申请日:2014-12-10

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30371

    摘要: The present disclosure involves systems, software, and computer implemented methods for generating a hash identifier. One example method includes: identifying a record to include in a table, the record associated with two or more primary key fields that are concatenated to create a concatenated key, wherein the table includes one or more hash columns for storing hash identifiers; applying a hash function to the concatenated key to create a new hash value; determining whether a record in the table has a hash value matching the new hash value; in response to determining that a hash value of a record matches the new hash value and the concatenated key of the identified record does not match the concatenated key of any existing record, adding a counter to the new hash value to generate a unique hash ID; and storing the record, including the unique hash ID, in the table.

    摘要翻译: 本公开涉及用于生成散列标识符的系统,软件和计算机实现的方法。 一个示例性方法包括:识别包括在表中的记录,所述记录与被级联的两个或多个主键字段相关联以创建连接的键,其中所述表包括用于存储散列标识符的一个或多个哈希列; 将哈希函数应用于连接的密钥以创建新的哈希值; 确定所述表中的记录是否具有与所述新散列值匹配的散列值; 响应于确定记录的散列值与新的散列值匹配,并且所识别的记录的级联密钥与任何现有记录的级联密钥不匹配,向新的散列值添加计数器以生成唯一的散列ID; 并将包括唯一散列ID的记录存储在表中。

    APPROXIMATE REPRESENTATION AND PROCESSING OF ARBITRARY CORRELATION STRUCTURES FOR CORRELATION HANDLING IN DATABASES
    6.
    发明申请
    APPROXIMATE REPRESENTATION AND PROCESSING OF ARBITRARY CORRELATION STRUCTURES FOR CORRELATION HANDLING IN DATABASES 有权
    用于数据库中相关处理的仲裁关联结构的近似表示和处理

    公开(公告)号:US20120066194A1

    公开(公告)日:2012-03-15

    申请号:US12879605

    申请日:2010-09-10

    申请人: Katrin Eisenreich

    发明人: Katrin Eisenreich

    IPC分类号: G06F17/30

    CPC分类号: G06Q40/04 G06Q40/06

    摘要: Implementations of the present disclosure include receiving user input, the user input indicating a distribution type and a correlation factor, providing the distribution type and correlation factor for identifying an approximate correlation representation (ACR) histogram from a plurality of ACR histograms based on the distribution type and the correlation factor, receiving the ACR histogram, retrieving a first distribution associated with a first uncertain value and a second distribution associated with a second uncertain value from computer-readable memory, processing the ACR histogram, the first distribution and the second distribution to generate a correlation histogram that represents a correlation between the first uncertain value and the second uncertain value, and displaying the correlation histogram on a display.

    摘要翻译: 本公开的实现包括接收用户输入,指示分布类型和相关因子的用户输入,基于分布类型提供用于从多个ACR直方图中识别近似相关表示(ACR)直方图的分布类型和相关因子 接收ACR直方图,从计算机可读存储器检索与第一不确定值相关联的第一分布和与第二不确定值相关联的第二分布,处理ACR直方图,第一分布和第二分布以产生 相关直方图,其表示第一不确定值和第二不确定值之间的相关性,并且在显示器上显示相关直方图。