Abstract:
An image pick-up unit inserted in the body picks up an image of the body, and transmits by radio the image to an extra-corporeal unit which is arranged outside the body. The image pick-up unit includes an image pick-up portion capturing an image, a data transmitting portion for transmitting the image obtained by the image pick-up portion to the extra-corporeal unit at a plurality of transmitting ratios, a characteristic amount detecting portion for detecting a predetermined amount of characteristics based on the image, and a determining portion for determining a valid image based on an output from the characteristic amount detecting portion. The data transmitting portion controls the data transmitting ratio in accordance with the determining result of the determining portion.
Abstract:
An image pick-up unit inserted in the body picks up an image of the body, and transmits by radio the image to an extra-corporeal unit which is arranged outside the body. The image pick-up unit includes an image pick-up portion capturing an image, a data transmitting portion for transmitting the image obtained by the image pick-up portion to the extra-corporeal unit at a plurality of transmitting ratios, a characteristic amount detecting portion for detecting a predetermined amount of characteristics based on the image, and a determining portion for determining a valid image based on an output from the characteristic amount detecting portion. The data transmitting portion controls the data transmitting ratio in accordance with the determining result of the determining portion.
Abstract:
An image pick-up unit inserted in the body picks up an image of the body, and transmits by radio the image to an extra-corporeal unit which is arranged outside the body. The image pick-up unit includes an image pick-up portion capturing an image, a data transmitting portion for transmitting the image obtained by the image pick-up portion to the extra-corporeal unit at a plurality of transmitting ratios, a characteristic amount detecting portion for detecting a predetermined amount of characteristics based on the image, and a determining portion for determining a valid image based on an output from the characteristic amount detecting portion. The data transmitting portion controls the data transmitting ratio in accordance with the determining result of the determining portion.
Abstract:
An image pick-up unit inserted in the body picks up an image of the body, and transmits by radio the image to an extra-corporeal unit which is arranged outside the body. The image pick-up unit includes an image pick-up portion capturing an image, a data transmitting portion for transmitting the image obtained by the image pick-up portion to the extra-corporeal unit at a plurality of transmitting ratios, a characteristic amount detecting portion for detecting a predetermined amount of characteristics based on the image, and a determining portion for determining a valid image based on an output from the characteristic amount detecting portion. The data transmitting portion controls the data transmitting ratio in accordance with the determining result of the determining portion.
Abstract:
An image pick-up unit inserted in the body picks up an image of the body, and transmits by radio the image to an extra-corporeal unit which is arranged outside the body. The image pick-up unit includes an image pick-up portion capturing an image, a data transmitting portion for transmitting the image obtained by the image pick-up portion to the extra-corporeal unit at a plurality of transmitting ratios, a characteristic amount detecting portion for detecting a predetermined amount of characteristics based on the image, and a determining portion for determining a valid image based on an output from the characteristic amount detecting portion. The data transmitting portion controls the data transmitting ratio in accordance with the determining result of the determining portion.
Abstract:
An image pick-up unit inserted in the body picks up an image of the body, and transmits by radio the image to an extra-corporeal unit which is arranged outside the body. The image pick-up unit includes an image pick-up portion capturing an image, a data transmitting portion for transmitting the image obtained by the image pick-up portion to the extra-corporeal unit at a plurality of transmitting ratios, a characteristic amount detecting portion for detecting a predetermined amount of characteristics based on the image, and a determining portion for determining a valid image based on an output from the characteristic amount detecting portion. The data transmitting portion controls the data transmitting ratio in accordance with the determining result of the determining portion.
Abstract:
An image pick-up unit inserted in the body picks up an image of the body, and transmits by radio the image to an extra-corporeal unit which is arranged outside the body. The image pick-up unit includes an image pick-up portion capturing an image, a data transmitting portion for transmitting the image obtained by the image pick-up portion to the extra-corporeal unit at a plurality of transmitting ratios, a characteristic amount detecting portion for detecting a predetermined amount of characteristics based on the image, and a determining portion for determining a valid image based on an output from the characteristic amount detecting portion. The data transmitting portion controls the data transmitting ratio in accordance with the determining result of the determining portion.
Abstract:
An endoscope apparatus to which an endoscope is detachably connected has an endoscope interface, an image processor and a parameter transfer control section. Here, the endoscope multiplexes a video signal obtained by an image pickup section with an endoscope ID as endoscope identification information, and transmits the signal to the endoscope apparatus. The endoscope interface separates the endoscope ID from the signal from the endoscope. The image processor has a parameter register in which a parameter related to an image process of the video signal is set, and a functional module for performing a predetermined image process with respect to the video signal based on the parameter. The parameter transfer control section reads the parameter corresponding to the endoscope ID separated in the endoscope interface, from a table memory for storing the parameter for each endoscope ID, and transfers the parameter to the parameter register.
Abstract:
When a capsule is manufactured, a unique number such as a serial number is stored in non-volatile memory in the capsule. If the capsule is used with an external apparatus, the unique number is sent from the capsule to the external apparatus. The external apparatus relates each unique number with a capsule ID comprising a small number of bits in a management table formed in non-volatile memory and sends the capsule ID to the capsule, and the capsule ID with the small number of bits is set as an identifier in the capsule. In this manner, it is made unnecessary to provide a switch in the capsule for setting the identifier and it becomes possible to reduce and send the quantity of information sent as the identifier.
Abstract:
When a capsule is manufactured, a unique number such as a serial number is stored in non-volatile memory in the capsule. If the capsule is used with an external apparatus, the unique number is sent from the capsule to the external apparatus. The external apparatus relates each unique number with a capsule ID comprising a small number of bits in a management table formed in non-volatile memory and sends the capsule ID to the capsule, and the capsule ID with the small number of bits is set as an identifier in the capsule. In this manner, it is made unnecessary to provide a switch in the capsule for setting the identifier and it becomes possible to reduce and send the quantity of information sent as the identifier.