Abstract:
The present invention relates to a method of determining the location of a target. The method includes initializing a set of base stations to determine their location relative to each other. At the target, the time of arrival of at least one signal from each of the plurality of base stations is measured. From this, the location of the target relative to the plurality of base stations may be directly calculated using a closed solution. In one embodiment, a time of arrival technique is used and in another embodiment a time difference of arrival technique is used. Preferably an ultra-wide band frequency is utilized.
Abstract:
The present invention relates to a method of determining the location of a target. The method includes initializing a set of base stations to determine their location relative to each other. At the target, the time of arrival of at least one signal from each of the plurality of base stations Is measured. From this, the location of the target relative to the plurality of base stations may be directly calculated using a closed solution. In one embodiment, a time of arrival technique is used and in another embodiment a time difference of arrival technique is used. Preferably an ultra-wide band frequency is utilized.
Abstract:
A navigation system includes a multi-axis accelerometer which can be installed in the vehicle in any unknown orientation. The orientation of the axes of the accelerometer is automatically determined by the navigation system. The signals from the accelerometer are then used to propagate the position of the vehicle.
Abstract:
The present invention relates to a navigation unit and base station used for determining location. A plurality of base stations are initialized to determine their location relative to each other. At the navigation unit, the time of arrival of at least one signal from each of the plurality of base stations is measured. From this, the location of the navigation unit relative to the plurality of base stations may be directly calculated using a closed solution. In one embodiment, a time of arrival technique is used and in another embodiment a time difference of arrival technique is used. Preferably an ultra-wide band frequency is utilized.
Abstract:
The present invention relates to a method of determining the location of a target. The method includes initializing a set of base stations to determine their location relative to each other. At the target, the time of arrival of at least one signal from each of the plurality of base stations Is measured. From this, the location of the target relative to the plurality of base stations may be directly calculated using a closed solution. In one embodiment, a time of arrival technique is used and in another embodiment a time difference of arrival technique is used. Preferably an ultra-wide band frequency is utilized.
Abstract:
A guitar pick having a planar and generally triangular main body with three sides. Two sides of the main body join in a rounded nose protruding outwardly from one side. A wing extends outwardly from the top of the main body so that at least a portion of the wing lies in a plane oblique to a plane of the main body. The wing may be curvilinear in shape or include plural planar sections.
Abstract:
A guitar pick having a planar and generally triangular main body with three sides. Two sides of the main body join in a rounded nose protruding outwardly from one side. A wing extends outwardly from the top of the main body so that at least a portion of the wing lies in a plane oblique to a plane of the main body. The wing may be curvilinear in shape or include plural planar sections.
Abstract:
The present invention relates to a method of determining the location of a target. The method includes initializing a set of base stations to determine their location relative to each other. At the target, the time of arrival of at least one signal from each of the plurality of base stations Is measured. From this, the location of the target relative to the plurality of base stations may be directly calculated using a closed solution. In one embodiment, a time of arrival technique is used and in another embodiment a time difference of arrival technique is used. Preferably an ultra-wide band frequency is utilized.
Abstract:
A collision and injury mitigation system (10) for an automotive vehicle (12) is provided. The system (10) includes two or more object detection sensors (15) that detect an object and generate one or more object detection signals. A controller (16) is electrically coupled to the two or more object detection sensors and performs a fuzzy logic technique to classify the object as a real object or a false object in response to the one or more object detection signals. A method for performing the same is also provided.
Abstract:
The present invention relates to a navigation unit and base station used for determining location. A plurality of base stations are initialized to determine their location relative to each other. At the navigation unit, the time of arrival of at least one signal from each of the plurality of base stations is measured. From this, the location of the navigation unit relative to the plurality of base stations may be directly calculated using a closed solution. In one embodiment, a time of arrival technique is used and in another embodiment a time difference of arrival technique is used. Preferably an ultra-wide band frequency is utilized.