Abstract:
Methods, systems, and media for training deep neural networks for cross-domain few-shot classification are described. The methods comprise an encoder and a decoder of a deep neural network. The training of the autoencoder comprises two training stages. For each iteration in the first training stage, a batch of data samples from the source dataset are sampled and fed to the encoder to generate a plurality of source feature maps, then determining a first training stage loss, which updates the autoencoder's parameters. For each iteration in the second training stage, the novel dataset is split into a support set and a query set. The support set is fed to the encoder to determine a prototype for each class label. The query set is also fed to the encoder to calculate a query set metric classification loss. The query set metric classification loss updates the autoencoder's parameters.
Abstract:
Methods and systems for determining a surface color of a target surface under an environment with an environmental light source. A plurality of images of the target surface are captured as the target surface is illuminated with a variable intensity, constant color light source and a constant intensity, constant color environmental light source, wherein the intensity of the light source on the target surface is varied by a known amount between the capturing of the images. A color feature tensor, independent of the environmental light source, is extracted from the image data, and used to infer a surface color of the target surface.
Abstract:
An adaptive action recognizer for video that performs multiscale spatiotemporal decomposition of video to generate lower complexity video. The adaptive action recognizer has a number of processing pathways, one for each level of video complexity with each processing pathway having a different computational cost. The adaptive action recognizer applies a decision making scheme that encourages using low average computational costs while retaining high accuracy.
Abstract:
A method, device and computer-readable medium for generating a super-resolution version of a compressed video stream. By leveraging the motion information and residual information in compressed video streams, described examples are able to skip the time-consuming motion-estimation step for most frames and make the most use of the SR results of key frames. A key frame SR module generates SR versions of I-frames and other key frames of a compressed video stream using techniques similar to existing multi-frame approaches to VSR. A non-key frame SR module generates SR version of the non-key inter frames between these key frames by making use of motion information and residual information used to encode the inter frames in the compressed video stream.
Abstract:
Methods and systems for determining a surface color of a target surface under an environment with an environmental light source. A plurality of images of the target surface are captured as the target surface is illuminated with a variable intensity, constant color light source and a constant intensity, constant color environmental light source, wherein the intensity of the light source on the target surface is varied by a known amount between the capturing of the images. A color feature tensor, independent of the environmental light source, is extracted from the image data, and used to infer a surface color of the target surface.
Abstract:
Methods and apparatus for gesture-based control of a device in a multi-user environment are described. The methods prioritize users or gestures based on a predetermined priority ruleset. A first-user-in-time ruleset prioritizes gestures based on when in time they were begun by a user in the camera FOV. An action-hierarchy ruleset prioritizes gestures based on the actions they correspond to, and the relative positions of those actions within an action hierarchy. A designated-master-user ruleset prioritizes gestures performed by an explicitly designated master user. Methods for designating a new master user and for providing gesture-control-related user feedback in a multi-user environment are also described.
Abstract:
System and method for classifying data objects occurring in an unstructured dataset, comprising: extracting feature vectors from the unstructured dataset, each feature vector representing an occurrence of a data object in the unstructured dataset; classifying the feature vectors into feature vector sets that each correspond to a respective object class from a plurality of object classes; for each feature vector set: performing multiple iterations of a clustering operation, each iteration including clustering feature vectors from the feature vector set into clusters of similar feature vectors and identifying outlier feature vectors, wherein for at least one iteration after a first iteration of the clustering operation, outlier feature vectors identified in a previous iteration are excluded from the clustering operation; and outputting a key cluster for the feature vector set from a final iteration of the multiple iterations, the key cluster including a greater number of similar feature vectors than any of the other clusters of the final iteration; and assembling a dataset that includes at least the feature vectors from the key clusters of the feature vector sets.
Abstract:
System and method for classifying data objects occurring in an unstructured dataset, comprising: extracting feature vectors from the unstructured dataset, each feature vector representing an occurrence of a data object in the unstructured dataset; classifying the feature vectors into feature vector sets that each correspond to a respective object class from a plurality of object classes; for each feature vector set: performing multiple iterations of a clustering operation, each iteration including clustering feature vectors from the feature vector set into clusters of similar feature vectors and identifying outlier feature vectors, wherein for at least one iteration after a first iteration of the clustering operation, outlier feature vectors identified in a previous iteration are excluded from the clustering operation; and outputting a key cluster for the feature vector set from a final iteration of the multiple iterations, the key cluster including a greater number of similar feature vectors than any of the other clusters of the final iteration; and assembling a dataset that includes at least the feature vectors from the key clusters of the feature vector sets.
Abstract:
Systems and methods for training an AdaBoost based classifier for detecting symmetric objects, such as human faces, in a digital image. In one example embodiment, such a method includes first selecting a sub-window of a digital image. Next, the AdaBoost based classifier extracts multiple sets of two symmetric scalar features from the sub-window, one being in the right half side and one being in the left half side of the sub-window. Then, the AdaBoost based classifier minimizes the joint error of the two symmetric features for each set of two symmetric scalar features. Next, the AdaBoost based classifier selects one of the features from the set of two symmetric scalar features for each set of two symmetric scalar features. Finally, the AdaBoost based classifier linearly combines multiple weak classifiers, each of which corresponds to one of the selected features, into a stronger classifier.
Abstract:
A method and system for efficiently detecting faces within a digital image. One example method includes identifying a digital image comprised of a plurality of sub-windows and performing a first scan of the digital image using a coarse detection level to eliminate the sub-windows that have a low likelihood of representing a face. The subset of the sub-windows that were not eliminated during the first scan are then scanned a second time using a fine detection level having a higher accuracy level than the coarse detection level used during the first scan to identify sub-windows having a high likelihood of representing a face.