Abstract:
An environmental monitoring and controlling system for a ventilated cage and rack system that monitors and measures air flow in the rack at either the rack or cage level. At the rack level, two pressure sensors are provided in a supply air system to accurately monitor the air flow rate into the rack. In addition, two pressure sensors may be provided in an exhaust air system to accurately monitor the air flow rate out of the rack. At the cage level, a cage may be equipped with a highly accurate pressure sensor, including a Venturi tube and thermistor, the monitor the air flow rate in a cage located at any cage position in the rack.
Abstract:
A differential pressure sensor based on pressure induced micro-flow that includes two connecting hoses that are considered when the pressure sensor is calibrated. The inventive differential pressure sensor includes a flexible hose as part of the device itself, and is calibrated with the flexible hose in place (consequently, a usable hose length needs to be specified beforehand). Calibration constants for the air flow channel are determined and stored in non-volatile memory, and used to provide accurate pressure measurements. Thus, impedance in the air flow path introduced by the flexible hose is considered when the pressure sensor is calibrated. That insures that any measurement of air flow is not adversely effected by the introduction of an impedance in the air flow path previously not considered by the sensor. The present invention thus provides a self-contained differential pressure sensing device suitable for detecting changes in pressure for applications where a small amount of leakage is acceptable.
Abstract:
An environmental monitoring and controlling system for a ventilated cage and rack system that monitors and measures air flow in the rack at either the rack or cage level. At the rack level, two pressure sensors are provided in a supply air system to accurately monitor the air flow rate into the rack. In addition, two pressure sensors may be provided in an exhaust air system to accurately monitor the air flow rate out of the rack. At the cage level, a cage may be equipped with a highly accurate pressure sensor, including a Venturi tube and thermistor, the monitor the air flow rate in a cage located at any cage position in the rack.
Abstract:
The present invention relates to a cage and rack system having a rack for housing cages in enclosed shelves, the system also including an air supply system for providing HEPA filtered air to the shelf, an airflow management system for controlling the direction of airflow within the shelf, and an exhaust system for removing air from within the shelf. The cages housed within the shelves can be connected to the exhaust system for creating a negative pressure within the cage.
Abstract:
An environmental monitoring and controlling system for a ventilated cage and rack system that monitors and measures air flow in the rack at either the rack or cage level. At the rack level, two pressure sensors are provided in a supply air system to accurately monitor the air flow rate into the rack. In addition, two pressure sensors may be provided in an exhaust air system to accurately monitor the air flow rate out of the rack. At the cage level, a cage may be equipped with a highly accurate pressure sensor, including a Venturi tube and thermistor, the monitor the air flow rate in a cage located at any cage position in the rack.
Abstract:
An environmental monitoring and controlling system for a ventilated cage and rack system that monitors and measures air flow in the rack at either the rack or cage level. At the rack level, two pressure sensors are provided in a supply air system to accurately monitor the air flow rate into the rack. In addition, two pressure sensors may be provided in an exhaust air system to accurately monitor the air flow rate out of the rack. At the cage level, a cage may be equipped with a highly accurate pressure sensor, including a Venturi tube and thermistor, the monitor the air flow rate in a cage located at any cage position in the rack.
Abstract:
A work station having an environmental controller for maintaining air flow in and through the work station at a user-selected level. The work station includes a pressure cabinet and a perforated work surface forming the top of the pressure cabinet. A pressure inducing assembly is located within the cabinet below the work surface to draw air into the cabinet and create a negative pressure in a work space defined above the work surface. A support coupled to two sides of the pressure cabinet provides a channel for air flow from the pressure cabinet to an air chamber located above the work surface. Air is drawn from the air chamber generally downward toward the work surface by the negative pressure created in the work space to provide an air curtain substantially surrounding the work surface.