Abstract:
One inventive aspect relates to an emulation system for real-time simulation of the physical layer of an analog communication system based at least on partly digital computation. The emulation system comprises a digital portion configured to perform digital computations and represent at least part of the signal propagation in the communication system. The system further comprises an analog portion configured to perform analog signal processing and represent other aspects of the physical layer of the communication system. The analog portion provides inputs to and receives outputs from the digital portion. The digital portion is configured to digitally compensate for inaccuracies introduced by the analog portion. Methods of emulating communication systems are also provided.
Abstract:
A system for checking a program memory) of a processing unit includes a check module, and the processing unit is made up of an instruction counter connected to the check module. The check module has a register connected to a first changeover switch that sets the register content. In a system that allows for the instruction addresses of the entire program memory to be checked, the instruction counter contains an ancillary counter, which runs through the instruction address space of the program memory independently of the program code during normal operation and which is connected to the register.
Abstract:
A system for checking a program memory) of a processing unit includes a check module, and the processing unit is made up of an instruction counter connected to the check module. The check module has a register connected to a first changeover switch that sets the register content. In a system that allows for the instruction addresses of the entire program memory to be checked, the instruction counter contains an ancillary counter, which runs through the instruction address space of the program memory independently of the program code during normal operation and which is connected to the register.
Abstract:
The invention relates to an electronically commutated electric motor comprising a stator and an especially permanent-magnetic rotor. The electric motor also comprises a control unit which is effectively connected to the stator and is designed to generate control signals for commutating the stator in such a way that the stator can generate a rotating magnetic field in order to rotate the rotor. The electric motor further comprises at least one rotor position sensor which is designed to detect a position, especially an angular position, of the rotor and generate a rotor position signal representing the position of the rotor. The control unit is designed to generate the control signals in accordance with the rotor position signal. According to the invention, the control unit is designed to sample and quantize the rotor position signal and generate a digital rotor position signal. The digital rotor position signal forms a time-related data stream which corresponds to the sampled and quantized rotor position signal. The control unit includes an interpolator which is designed to generate at least one intermediate value in the digital rotor position signal, said intermediate value lying between two successive rotor position values.