Abstract:
A back lapping in-line system for semiconductor device fabrication carries out a vinyl covering, a back side grinding, and a vinyl removing for grinding the back side of a wafer in-line with one single process. The back lapping in-line system has a server connected to a network line, a program therein for controlling the in-line processes, and an in-line facility connected to the server by a standard communication line, wherein parts of the in-line facility are assembled in order, and each part carries out its corresponding process according to information communicated to and from the server, and unloads the wafer after it passes through all of the corresponding processes successively. The in-line facility uses a single loading and unloading, and needs no storage space between parts.
Abstract:
A method and apparatus for grinding wafers without using an ultraviolet tape attached to the front face of the wafer reduces manufacturing costs, simplifies the grinding process and protects the semiconductor chips formed on the front face of the wafer from being damaged by static electricity. The grinding apparatus uses a grind chuck formed of a soft material having a high elastic modulus and a rising groove formed in the grind chuck. Deionized water is supplied onto the wafer from a first direction. Simultaneously, deionized water or air is supplied into the rising groove of the grind chuck from a second direction opposite to the first direction. The circumferential edge of the wafer overlaps the rising groove, such that the simultaneous supply of deionized water and/or air from the two directions protects the front surface of the wafer from being contaminated by silicon dust. The soft material of the grind chuck also protects the front surface of the wafer from being damaged by pressure from the grind unit.
Abstract:
A semiconductor wafer tape laminating system includes a loading device for conveying a wafer or cassette to a predetermined location where a laminating process is performed. A laminating device attaches UV tape to the front surface of the wafer conveyed by the loading device. A precutting device having a knife cuts the UV tape around the wafer as spaced therefrom to leave an edge of the tape protruding beyond the peripheral edge of the wafer. A wire cutting device having a wire removes the edge of the UV tape left around the wafer by the precutting device. An ultra-violet illuminator irradiates the edge of the UV tape with ultra-violet rays, and an unloading device carries the wafer to a downstream processing station. When the edge of the UV tape is irradiated with ultra-violet rays, it loses its adhesive strength. Accordingly, the edge will not attach itself to the wafer or to a piece of processing equipment after it is removed by the wire cutting device.
Abstract:
An apparatus for grinding wafers includes a grind chuck, formed of a soft material having a high elastic modulus, formed on a grind table. A grind unit grinds the wafer held by the grind chuck. Deionized water is supplied onto the wafer by a supply duct. A dam is formed on the grind table to surround the grind chuck, so that the wafer and the grind unit are submerged during grinding of the wafer. Also, an exhaust hole is formed through the grind table within an area surrounded by the dam, to exhaust the deionized water from the area surrounded by the dam.