摘要:
Disclosed are a method for fabrication of a thin film phosphor, a thin film phosphor and a product using the same. The thin film phosphor is fabricated by adsorbing a raw material to a surface of a substrate simultaneously with diffusing the same or, otherwise, depositing the raw material on the substrate and heating the same, so as to diffuse the raw material from the surface of the substrate into the substrate wherein the substrate contains at least one selected from constitutional elements of the phosphor. The fabricated thin film phosphor has a constitutional composition continuously varied to gradually come close to a constitutional composition of the substrate when the constitutional elements of the phosphor are diffused from a surface to an inner side of the substrate. In particular, if the substrate material, the raw material and the phosphor layer material have the same or similar structure, and when the phosphor layer material has an anisotropic texture structure, light luminance is maximized while a decay time is minimized. According to this disclosure, different thin film phosphors with improved luminance comparable to that of a powder phosphor may be fabricated. Compared to such powder phosphor, the thin film phosphor fabricated as described above is thermally and chemically stable and does not exhibit an interference pattern or light reflection between the thin film phosphor and the substrate so as to have excellent light transmission, thereby being applicable to large-scale display devices.
摘要:
Disclosed are a method for fabrication of a thin film phosphor, a thin film phosphor and a product using the same. The thin film phosphor is fabricated by adsorbing a raw material to a surface of a substrate simultaneously with diffusing the same or, otherwise, depositing the raw material on the substrate and heating the same, so as to diffuse the raw material from the surface of the substrate into the substrate wherein the substrate contains at least one selected from constitutional elements of the phosphor. The fabricated thin film phosphor has a constitutional composition continuously varied to gradually come close to a constitutional composition of the substrate when the constitutional elements of the phosphor are diffused from a surface to an inner side of the substrate. In particular, if the substrate material, the raw material and the phosphor layer material have the same or similar structure, and when the phosphor layer material has an anisotropic texture structure, light luminance is maximized while a decay time is minimized. According to this disclosure, different thin film phosphors with improved luminance comparable to that of a powder phosphor may be fabricated. Compared to such powder phosphor, the thin film phosphor fabricated as described above is thermally and chemically stable and does not exhibit an interference pattern or light reflection between the thin film phosphor and the substrate so as to have excellent light transmission, thereby being applicable to large-scale display devices.