Abstract:
A method and an apparatus for estimating 3D attitude are disclosed. The method comprises following steps. A set of current angular velocity, a set of current magnetic flux and a set of acceleration of a carrier are sensed. A set of estimated attitude angles are estimated according to the set of current angular velocities, a set of history attitude angles and a motion model. A disturbance parameter is calculated according the set of current magnetic flux and a set of history magnetic flux. It is determined whether the disturbance parameter is more than a disturbance threshold or not. If yes, the set of estimated attitude angles are updated according to the set of current accelerations not the set of current magnetic flux. If not, the set of estimated attitude angles are updated according to the set of current accelerations and the set of current magnetic flux.
Abstract:
The invention relates to a method and apparatus for predicting/alarming the moving of hidden objects. The apparatus comprises: a distance sensing unit, for obtaining a distance data detected within a specific sensing range and thus outputting the distance data; a speed sensing unit, for measuring the movement of a carrier to obtain a real-time speed data of the carrier and thus output the speed data; a control unit, for receiving and analyzing the distance data and the speed data to obtain information relating to the position of the carrier, the environment surrounding the carrier and positions of objects moving in the blind spots of the carrier, and thus to perform an evaluation based upon the aforesaid information to determine a danger level for issuing a control signal accordingly; and an alarm unit, for issuing an alarm signal according to the control signal.
Abstract:
A mapping method is provided. The environment is scanned to obtain depth information of environmental obstacles. The image of the environment is captured to generate an image plane. The depth information of environmental obstacles is projected onto the image plane, so as to obtain projection positions. At least one feature vector is calculated from a predetermined range around each projection position. The environmental obstacle depth information and the environmental feature vector are merged to generate a sub-map at a certain time point. Sub-maps at all time points are combined to generate a map. In addition, a localization method using the map is also provided.
Abstract:
The invention relates to a method and apparatus for predicting/alarming the moving of hidden objects. The apparatus comprises: a distance sensing unit, for obtaining a distance data detected within a specific sensing range and thus outputting the distance data; a speed sensing unit, for measuring the movement of a carrier to obtain a real-time speed data of the carrier and thus output the speed data; a control unit, for receiving and analyzing the distance data and the speed data to obtain information relating to the position of the carrier, the environment surrounding the carrier and positions of objects moving in the blind spots of the carrier, and thus to perform an evaluation based upon the aforesaid information to determine a danger level for issuing a control signal accordingly; and an alarm unit, for issuing an alarm signal according to the control signal.
Abstract:
A camera with dynamic calibration and a method thereof is provided. The camera is first subject to an initial calibration. Then, a motion amount of the camera is calculated, and a plurality of motion amount estimation samples of the camera is generated according to the motion amount. Then, a weight of each of the motion amount estimation samples is calculated. Thereafter, the plurality of motion amount estimation samples is re-sampled based on the weights, and the camera is calibrated by the re-sampled estimated motion samples.
Abstract:
A mapping method is provided. The environment is scanned to obtain depth information of environmental obstacles. The image of the environment is captured to generate an image plane. The depth information of environmental obstacles is projected onto the image plane, so as to obtain projection positions. At least one feature vector is calculated from a predetermined range around each projection position. The environmental obstacle depth information and the environmental feature vector are merged to generate a sub-map at a certain time point. Sub-maps at all time points are combined to generate a map. In addition, a localization method using the map is also provided.
Abstract:
A positioning system and a method thereof are provided. In the positioning method, a first and a second pose information of a moving device are obtained by a first positioning device and a second positioning device respectively, wherein the first pose information corresponds to the second pose information. In addition, a plurality of first candidacy pose information is generated in an error range of the first pose information. Furthermore, a plurality of second candidacy pose information is generated according to the first pose information respectively. One of the second candidacy pose information having a smallest error derived from the second pose information is selected for updating the pose information of the first positioning device and parameter information of the second positioning device. Thereby, pose information of the moving device is updated and parameter information of the second orientation devices is calibrated simultaneously.
Abstract:
A positioning system and a method thereof are provided. In the positioning method, a first and a second pose information of a moving device are obtained by a first positioning device and a second positioning device respectively, wherein the first pose information corresponds to the second pose information. In addition, a plurality of first candidacy pose information is generated in an error range of the first pose information. Furthermore, a plurality of second candidacy pose information is generated according to the first pose information respectively. One of the second candidacy pose information having a smallest error derived from the second pose information is selected for updating the pose information of the first positioning device and parameter information of the second positioning device. Thereby, pose information of the moving device is updated and parameter information of the second orientation devices is calibrated simultaneously.