Abstract:
A method is provided for identifying a root cause of a fault in a serviced vehicle based on analytical symptoms. Parameter identification data associated with identified DTCs is retrieved. Parameter identification data from a plurality of vehicles experiencing the DTCs is collected. A first set of diagnostic rules is generated that identify vehicle operating parameters for executing a DTC algorithm or for triggering a DTC. A second set of diagnostic rules is generated that identify vehicle operating parameters used for selecting field failure data obtained when the DTC is triggered. Statistically significant rules are extracted from the second set of diagnostic rules. The first set of rules and the statistically significant rules are cooperatively applied to the parameter identification data for identifying a subset of the parameter identification data that represents anomalies. A subject matter expert analyzes the anomalies for identifying a root cause of the fault.
Abstract:
A method is provided for identifying a root cause of a fault in a serviced vehicle based on analytical symptoms. Parameter identification data associated with identified DTCs is retrieved. Parameter identification data from a plurality of vehicles experiencing the DTCs is collected. A first set of diagnostic rules is generated that identify vehicle operating parameters for executing a DTC algorithm or for triggering a DTC. A second set of diagnostic rules is generated that identify vehicle operating parameters used for selecting field failure data obtained when the DTC is triggered. Statistically significant rules are extracted from the second set of diagnostic rules. The first set of rules and the statistically significant rules are cooperatively applied to the parameter identification data for identifying a subset of the parameter identification data that represents anomalies. A subject matter expert analyzes the anomalies for identifying a root cause of the fault.
Abstract:
A system and method for reducing or eliminating built-in tests and diagnostic trouble codes that are set as a result of improper parameter values. The method includes collecting field failure data that identifies diagnostic trouble codes and parameters of the system that are used to set diagnostic trouble codes. The method transforms the collected data into a format more appropriate for human analysis and pre-processes the transferred data to identify and remove information that could bias the human analysis. The method includes plotting linear and nonlinear combinations of operation parameters, performing data mining and analysis for detecting inappropriate settings of fault codes in the pre-processed data and providing the mined data to a subject matter expert for review to determine whether a diagnostic trouble code has been issued because of improper parameters.
Abstract:
A system and method for determining the status of a vehicle battery to determine whether the battery may not have enough charge to start the vehicle. The method includes collecting data relating to the battery on the vehicle and collecting data relating to the battery at a remote back-office. Both the vehicle and the remote data center determine battery characteristics based on the collected data and the likelihood of a vehicle no-start condition, where the algorithm used at the remote back-office may be more sophisticated. The data collected at the remote back-office may include vehicle battery information transmitted wirelessly from the vehicle, and other information, such as temperature, battery reliability, miles that the vehicle has driven per day, ambient temperature, high content vehicle, etc. Both the vehicle and the remote back-office may determine the battery open circuit voltage.
Abstract:
A system and method for determining the status of a vehicle battery to determine whether the battery may not have enough charge to start the vehicle. The method includes collecting data relating to the battery on the vehicle and collecting data relating to the battery at a remote back-office. Both the vehicle and the remote data center determine battery characteristics based on the collected data and the likelihood of a vehicle no-start condition, where the algorithm used at the remote back-office may be more sophisticated. The data collected at the remote back-office may include vehicle battery information transmitted wirelessly from the vehicle, and other information, such as temperature, battery reliability, miles that the vehicle has driven per day, ambient temperature, high content vehicle, etc. Both the vehicle and the remote back-office may determine the battery open circuit voltage.