Abstract:
The present invention provides systems and methods for programming connections through a multi-stage switch fabric. The present invention utilizes load-balancing, blocking recovery, background rebalancing, and rollback algorithms to select and manage connection balance on center stage switches in the multi-stage switch fabric for new and modified connections. The load-balancing algorithm attempts to spread the multi-connection slices across center stage switches as evenly as possible, to increase the probability that future multi-connection slices can be added without needing to rearrange existing slices. Advantageously, the present invention is efficient by making the best possible local decision for one multi-connection slice at a time, without considering other multi-connection slices that may also need center switch assignments. Additionally blocking recovery, rollback and background rebalancing features are also supported.
Abstract:
The present invention provides systems and methods for programming connections through a multi-stage switch fabric. The present invention utilizes load-balancing, blocking recovery, background rebalancing, and rollback algorithms to select and manage connection balance on center stage switches in the multi-stage switch fabric for new and modified connections. The load-balancing algorithm attempts to spread the multi-connection slices across center stage switches as evenly as possible, to increase the probability that future multi-connection slices can be added without needing to rearrange existing slices. Advantageously, the present invention is efficient by making the best possible local decision for one multi-connection slice at a time, without considering other multi-connection slices that may also need center switch assignments. Additionally blocking recovery, rollback and background rebalancing features are also supported.
Abstract:
A system includes a plurality of modules, a backplane communicatively coupled to the plurality of modules, a plurality of links defined between the plurality of modules over the backplane, and a link management system configured to dynamically manage parameters associated with each of the plurality of links. A link management method includes, for a system, defining a codebook for each module, device, and interconnect in the system, the codebook includes data describing physical link topologies and configuration parameters associated therewith, for initializing a link in the system, obtaining appropriate codebooks for each segment in the link, calculating an overall link loss for the link based on data in the appropriate codebooks, and obtaining configuration parameters for the link based on the overall link loss.
Abstract:
The present disclosure provides to Optical Transport Network (OTN_ synchronization systems and methods that maintain proper sequential ordering of events at nodes which may be utilized in performing root cause analysis or diagnosing network performance. In an exemplary embodiment, the systems and methods utilize functionality incorporated into OTN providing a cost effective and standards-based approach to nodal synchronization. Once synchronized, network events are logged with an appropriate timestamp enabling a determination of a sequential order of network events can be determined. Further, the node timestamps may be synchronized, with microsecond or even sub-microsecond of precession which is critical in diagnosing network failures or slow traffic recovery.
Abstract:
The present disclosure provides to Optical Transport Network (OTN_ synchronization systems and methods that maintain proper sequential ordering of events at nodes which may be utilized in performing root cause analysis or diagnosing network performance. In an exemplary embodiment, the systems and methods utilize functionality incorporated into OTN providing a cost effective and standards-based approach to nodal synchronization. Once synchronized, network events are logged with an appropriate timestamp enabling a determination of a sequential order of network events can be determined. Further, the node timestamps may be synchronized, with microsecond or even sub-microsecond of precession which is critical in diagnosing network failures or slow traffic recovery.
Abstract:
A system includes a plurality of modules, a backplane communicatively coupled to the plurality of modules, a plurality of links defined between the plurality of modules over the backplane, and a link management system configured to dynamically manage parameters associated with each of the plurality of links A link management method includes, for a system, defining a codebook for each module, device, and interconnect in the system, the codebook includes data describing physical link topologies and configuration parameters associated therewith, for initializing a link in the system, obtaining appropriate codebooks for each segment in the link, calculating an overall link loss for the link based on data in the appropriate codebooks, and obtaining configuration parameters for the link based on the overall link loss.