Abstract:
A sprinkler head includes a nozzle fixed within the sprinkler body, and a wobbler cage including a water deflector plate downstream of the nozzle mounted for rotating and wobbling motion relative to the sprinkler body. In certain embodiments, a viscous brake is fixed within the sprinkler body and includes a shaft rotatable about the longitudinal axis passing through the nozzle. The shaft is eccentrically coupled to the water deflector plate for slowing the rotating and wobbling motion of the wobbler cage and the water deflector plate.
Abstract:
A sprinkler head includes a base adapted to be secured to a component supplying water under pressure; an arc adjustment ring rotatably mounted on the base; a nozzle and a stream deflector supported by an elongated stem carried by the base, the nozzle and the stream deflector cooperating to define an adjustable nozzle orifice; a water distribution plate secured to a shaft in the stem and located downstream of the nozzle; the stem and the nozzle axially movable relative to the base; and a drive train operatively connected between the arc adjustment ring and the nozzle to rotate the nozzle relative to the stream deflector to thereby adjust the nozzle orifice between a pair of limit positions. The stem is rotatable within the base upon over-rotation of the arc adjustment ring beyond either of the pair of limit positions. The sprinkler head also incorporates a throttle control member secured to an upstream end of the shaft such that rotation of the shaft causes the throttle control member to move axially relative to a flow restriction seat portion, to thereby adjust flow rate through the nozzle, the throttle control member engageable with the seat in a maximum restriction position; and means for permitting rotation of the throttle control member with the shaft upon over-rotation of the shaft.
Abstract:
A sprinkler head with plural selectable nozzles includes a sprinkler body having inlet and outlet bores aligned along a first axis; a nozzle magazine rotatably supported on the sprinkler body, the nozzle magazine carrying at least two nozzles and provided with at least one shut-off surface portion located between the at least two nozzles. The nozzles are selectively rotatable into an operative position between the inlet and outlet bores, the nozzle magazine being rotatable about a second axis angularly offset from the first axis.
Abstract:
A sprinkler head includes a first housing carrying a center stem having an inlet at an upstream end and an outlet at a downstream end. A second housing is supported within the first housing and encloses a nozzle and a pressure regulator in axially-aligned relationship, defining a flowpath between the inlet and an orifice of the nozzle. The second housing is normally biased to a retracted position but is moveable to an extended position relative to the first housing and to the center stem. A surface of the pressure regulator cooperates with the outlet of the center stem as the second housing moves relative to the first housing to regulate pressure to the nozzle orifice.
Abstract:
A rotary sprinkler comprising a sprinkler body supporting a nozzle body and a water distribution plate supported on a shaft downstream of said nozzle body, said water distribution plate provided with a plurality of grooves shaped to redirect a stream emitted from said nozzle body and to cause the water distribution plate to rotate when struck by the stream; a stream deflector supported within said sprinkler body and surrounding said nozzle body; wherein said nozzle body and said stream deflector cooperate to produce a substantially rectangular wetted pattern area.
Abstract:
A rotating stream sprinkler including a rotor plate supported on one end of a shaft for rotation, in an operative mode, relative to the shaft; a nozzle located along the shaft upstream of the rotor plate; the rotor plate formed with a chamber and one end of the shaft has a stator fixed thereto within the chamber, the fluid chamber at partially filled with a viscous fluid; and wherein the chamber is at least partially closed at an upper end thereof by a rotor cap plate; and further wherein an underside of the rotor cap plate is provided with a first plurality of teeth and an upper surface of the stator is provided with a second plurality of mating teeth adapted to engage the first plurality of teeth to enable rotation of the rotor plate with the shaft in the adjustment mode. A flow rate adjustment mechanism includes a throttle member threadably mounted on the shaft for movement relative to the shaft, toward or away from an annular seat having a discontinuous edge such that the flow rate cannot be shut off by having the throttle member engage the seat.
Abstract:
A fluid pressure regulator includes a regulator housing having an inlet end and an outlet end; a flexible flow tube extending between the inlet end and the outlet end; a hollow piston located at a downstream location relative to a mid-portion of the flow tube in a direction of flow of fluid through the regulator housing; a first chamber above the piston and a second chamber below the piston; a passage establishing fluid communication between the outlet end and the first chamber; and at least one pinch arm pivotally mounted at one end within the regulator housing and movable in response to movement of the piston by an increase in fluid pressure in the first chamber so that an opposite end of the at least one pinch arm will pinch a portion of the flow tube and thereby restrict flow through the flow tube.
Abstract:
A sprinkler head includes a base; an arc adjustment ring; a nozzle and a stream deflector supported by an elongated stem carried by the base, the nozzle and the stream deflector cooperating to define an adjustable nozzle orifice; a water distribution plate secured to a shaft and located downstream of the nozzle; and a drive train operatively connected between the arc adjustment ring and the nozzle to rotate the nozzle relative to the stream deflector to adjust the nozzle orifice between limit positions. The stem is rotatable within the base upon over-rotation of the arc adjustment ring beyond the limit positions. The sprinkler head also incorporates a throttle control member movable axially relative to a flow restriction seat, to thereby adjust flow rate through the nozzle, and means for permitting rotation of the throttle control member with the shaft upon over-rotation of the shaft.
Abstract:
A rotary sprinkler head comprising a sprinkler body devoid of any operative dynamic seals for communicating a source of water under pressure with an outlet for directing water under pressure communicated therewith into an atmospheric condition in a primary stream having a generally vertically extending axis. A rotary distributor is provided which has surfaces for engaging the primary stream (1) to establish a reactionary force component acting on the distributor in a direction tangential to the rotational axis thereof so as to effect rotational movement thereof about its axis of rotation and (2) to direct the primary stream engaged thereby in the form of a pattern forming stream or streams including at least one stream moving away from the distributor in a direction having a substantial component extending outwardly from the generally vertical axis of the primary stream so as to define the radius of the circular spray pattern. A speed reducing assembly is operatively associated with the distributor for reducing the rotational speed of the distributor resulting from the reactionary force component from a relatively high whirling speed which would occur without the speed reducing assembly to a relatively slow speed.
Abstract:
A bale retainer finger structure located on a bale wagon along a first table thereof has a pointed tip which will embed into a bale and restrain it from being dislocated toward a bale-receiving end of the first table during the transfer of the bale to a second table on the bale wagon. The finger structure also is mounted for pivotal movement relative to the transfer path of the bale such that its tip completely withdraws from the bale before the bale is completely delivered to the second table but only after the bale has made firm contact with the surface of the second table.